Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
iscyg.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
1 2
|
iscyg |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ) |
4 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
6 |
5
|
an32s |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
7 |
6
|
fmpttd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) : ℤ ⟶ 𝐵 ) |
8 |
|
frn |
⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) : ℤ ⟶ 𝐵 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ⊆ 𝐵 ) |
9 |
|
eqss |
⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) ) |
10 |
9
|
baib |
⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ⊆ 𝐵 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) ) |
11 |
7 8 10
|
3syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) ) |
12 |
|
dfss3 |
⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ) |
13 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) |
14 |
|
ovex |
⊢ ( 𝑛 · 𝑥 ) ∈ V |
15 |
13 14
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) |
16 |
15
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) |
17 |
12 16
|
bitri |
⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) |
18 |
11 17
|
bitrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |
19 |
18
|
rexbidva |
⊢ ( 𝐺 ∈ Grp → ( ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |
20 |
19
|
pm5.32i |
⊢ ( ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |
21 |
3 20
|
bitri |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑥 ) ) ) |