| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | iscyg.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | iscygd.3 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | iscygd.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | iscygd.5 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 6 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 7 |  | eqid | ⊢ { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 }  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 8 | 1 2 7 | iscyggen2 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑋  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 }  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 }  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 10 | 4 6 9 | mpbir2and | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } ) | 
						
							| 11 | 10 | ne0d | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 }  ≠  ∅ ) | 
						
							| 12 | 1 2 7 | iscyg2 | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 }  ≠  ∅ ) ) | 
						
							| 13 | 3 11 12 | sylanbrc | ⊢ ( 𝜑  →  𝐺  ∈  CycGrp ) |