Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
iscyg.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
iscyg3.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
4 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ ) → 𝑥 = 𝑋 ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑋 ) ) |
6 |
5
|
mpteq2dva |
⊢ ( 𝑥 = 𝑋 → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) |
7 |
6
|
rneqd |
⊢ ( 𝑥 = 𝑋 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
9 |
8 3
|
elrab2 |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |