Metamath Proof Explorer


Theorem iscyggen

Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 𝐵 = ( Base ‘ 𝐺 )
iscyg.2 · = ( .g𝐺 )
iscyg3.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
Assertion iscyggen ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 iscyg.1 𝐵 = ( Base ‘ 𝐺 )
2 iscyg.2 · = ( .g𝐺 )
3 iscyg3.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
4 simpl ( ( 𝑥 = 𝑋𝑛 ∈ ℤ ) → 𝑥 = 𝑋 )
5 4 oveq2d ( ( 𝑥 = 𝑋𝑛 ∈ ℤ ) → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑋 ) )
6 5 mpteq2dva ( 𝑥 = 𝑋 → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) )
7 6 rneqd ( 𝑥 = 𝑋 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) )
8 7 eqeq1d ( 𝑥 = 𝑋 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) )
9 8 3 elrab2 ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) )