| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | iscyg.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | iscyg3.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 4 | 1 2 3 | iscyggen | ⊢ ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 5 | 1 2 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑛  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑛  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 6 | 5 | 3expa | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑛  ∈  ℤ )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑛  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 7 | 6 | an32s | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  ∧  𝑛  ∈  ℤ )  →  ( 𝑛  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 8 | 7 | fmpttd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) : ℤ ⟶ 𝐵 ) | 
						
							| 9 |  | frn | ⊢ ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) : ℤ ⟶ 𝐵  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵 ) | 
						
							| 10 |  | eqss | ⊢ ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵  ↔  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵  ∧  𝐵  ⊆  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 11 | 10 | baib | ⊢ ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ⊆  𝐵  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵  ↔  𝐵  ⊆  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 12 | 8 9 11 | 3syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵  ↔  𝐵  ⊆  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 13 |  | dfss3 | ⊢ ( 𝐵  ⊆  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ↔  ∀ 𝑦  ∈  𝐵 𝑦  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) | 
						
							| 15 |  | ovex | ⊢ ( 𝑛  ·  𝑋 )  ∈  V | 
						
							| 16 | 14 15 | elrnmpti | ⊢ ( 𝑦  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ↔  ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 17 | 16 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐵 𝑦  ∈  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ↔  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 18 | 13 17 | bitri | ⊢ ( 𝐵  ⊆  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ↔  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 19 | 12 18 | bitrdi | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵  ↔  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) ) | 
						
							| 20 | 19 | pm5.32da | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑋  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 )  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 21 | 4 20 | bitrid | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑦  =  ( 𝑛  ·  𝑋 ) ) ) ) |