Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
iscyg.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
iscyg3.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
4 |
1 2 3
|
iscyggen |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
5 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
7 |
6
|
an32s |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
8 |
7
|
fmpttd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) : ℤ ⟶ 𝐵 ) |
9 |
|
frn |
⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) : ℤ ⟶ 𝐵 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ) |
10 |
|
eqss |
⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) ) |
11 |
10
|
baib |
⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) ) |
12 |
8 9 11
|
3syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) ) |
13 |
|
dfss3 |
⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) |
14 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) |
15 |
|
ovex |
⊢ ( 𝑛 · 𝑋 ) ∈ V |
16 |
14 15
|
elrnmpti |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
17 |
16
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
18 |
13 17
|
bitri |
⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
19 |
12 18
|
bitrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) |
20 |
19
|
pm5.32da |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |
21 |
4 20
|
syl5bb |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |