Step |
Hyp |
Ref |
Expression |
1 |
|
iscygodd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
iscygodd.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
iscygodd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
iscygodd.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
iscygodd.5 |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) |
6 |
1 2
|
odcl |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑂 ‘ 𝑋 ) ∈ ℕ0 ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ∈ ℕ0 ) |
8 |
5 7
|
eqeltrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
9 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
10 |
|
hashclb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) |
11 |
9 10
|
ax-mp |
⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
12 |
8 11
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
13 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
14 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } |
15 |
1 13 14 2
|
cyggenod |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ) → ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
16 |
3 12 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑋 ) = ( ♯ ‘ 𝐵 ) ) ) ) |
17 |
4 5 16
|
mpbir2and |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
18 |
17
|
ne0d |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) |
19 |
1 13 14
|
iscyg2 |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) ) |
20 |
3 18 19
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |