Step |
Hyp |
Ref |
Expression |
1 |
|
dilset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
dilset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
dilset.w |
⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) |
4 |
|
dilset.m |
⊢ 𝑀 = ( PAut ‘ 𝐾 ) |
5 |
|
dilset.l |
⊢ 𝐿 = ( Dil ‘ 𝐾 ) |
6 |
1 2 3 4 5
|
dilsetN |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐿 ‘ 𝐷 ) = { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐹 ∈ ( 𝐿 ‘ 𝐷 ) ↔ 𝐹 ∈ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
8 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ↔ ( 𝐹 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
13 |
7 12
|
bitrdi |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝐹 ∈ ( 𝐿 ‘ 𝐷 ) ↔ ( 𝐹 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) |