Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝐺 DivRingOps 𝐻 ↔ 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ) |
2 |
|
df-drngo |
⊢ DivRingOps = { 〈 𝑥 , 𝑦 〉 ∣ ( 〈 𝑥 , 𝑦 〉 ∈ RingOps ∧ ( 𝑦 ↾ ( ( ran 𝑥 ∖ { ( GId ‘ 𝑥 ) } ) × ( ran 𝑥 ∖ { ( GId ‘ 𝑥 ) } ) ) ) ∈ GrpOp ) } |
3 |
2
|
relopabiv |
⊢ Rel DivRingOps |
4 |
3
|
brrelex1i |
⊢ ( 𝐺 DivRingOps 𝐻 → 𝐺 ∈ V ) |
5 |
1 4
|
sylbir |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps → 𝐺 ∈ V ) |
6 |
5
|
anim1i |
⊢ ( ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ∧ 𝐻 ∈ 𝐴 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐻 ∈ 𝐴 ∧ 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) ) |
8 |
|
rngoablo2 |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ AbelOp ) |
9 |
|
elex |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ V ) |
10 |
8 9
|
syl |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ V ) |
11 |
10
|
ad2antrl |
⊢ ( ( 𝐻 ∈ 𝐴 ∧ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) → 𝐺 ∈ V ) |
12 |
|
simpl |
⊢ ( ( 𝐻 ∈ 𝐴 ∧ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) → 𝐻 ∈ 𝐴 ) |
13 |
11 12
|
jca |
⊢ ( ( 𝐻 ∈ 𝐴 ∧ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) ) |
14 |
|
df-drngo |
⊢ DivRingOps = { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } |
15 |
14
|
eleq2i |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ↔ 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } ) |
16 |
|
opeq1 |
⊢ ( 𝑔 = 𝐺 → 〈 𝑔 , ℎ 〉 = 〈 𝐺 , ℎ 〉 ) |
17 |
16
|
eleq1d |
⊢ ( 𝑔 = 𝐺 → ( 〈 𝑔 , ℎ 〉 ∈ RingOps ↔ 〈 𝐺 , ℎ 〉 ∈ RingOps ) ) |
18 |
|
rneq |
⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) |
19 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) ) |
20 |
19
|
sneqd |
⊢ ( 𝑔 = 𝐺 → { ( GId ‘ 𝑔 ) } = { ( GId ‘ 𝐺 ) } ) |
21 |
18 20
|
difeq12d |
⊢ ( 𝑔 = 𝐺 → ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) = ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) |
22 |
21
|
sqxpeqd |
⊢ ( 𝑔 = 𝐺 → ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) = ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) |
23 |
22
|
reseq2d |
⊢ ( 𝑔 = 𝐺 → ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) = ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑔 = 𝐺 → ( ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ↔ ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) |
25 |
17 24
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) ↔ ( 〈 𝐺 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
26 |
|
opeq2 |
⊢ ( ℎ = 𝐻 → 〈 𝐺 , ℎ 〉 = 〈 𝐺 , 𝐻 〉 ) |
27 |
26
|
eleq1d |
⊢ ( ℎ = 𝐻 → ( 〈 𝐺 , ℎ 〉 ∈ RingOps ↔ 〈 𝐺 , 𝐻 〉 ∈ RingOps ) ) |
28 |
|
reseq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) = ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ) |
29 |
28
|
eleq1d |
⊢ ( ℎ = 𝐻 → ( ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ↔ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) |
30 |
27 29
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( 〈 𝐺 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
31 |
25 30
|
opelopabg |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( 〈 𝑔 , ℎ 〉 ∈ RingOps ∧ ( ℎ ↾ ( ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) × ( ran 𝑔 ∖ { ( GId ‘ 𝑔 ) } ) ) ) ∈ GrpOp ) } ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
32 |
15 31
|
syl5bb |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |
33 |
7 13 32
|
pm5.21nd |
⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ DivRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ ( 𝐻 ↾ ( ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) × ( ran 𝐺 ∖ { ( GId ‘ 𝐺 ) } ) ) ) ∈ GrpOp ) ) ) |