Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isdomn.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
isdomn.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
7 |
|
fvexd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 0g ‘ 𝑟 ) ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
10 |
9 3
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 0g ‘ 𝑟 ) = 0 ) |
11 |
|
simplr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → 𝑏 = 𝐵 ) |
12 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
14 |
13
|
oveqdr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
15 |
|
id |
⊢ ( 𝑧 = 0 → 𝑧 = 0 ) |
16 |
14 15
|
eqeqan12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 · 𝑦 ) = 0 ) ) |
17 |
|
eqeq2 |
⊢ ( 𝑧 = 0 → ( 𝑥 = 𝑧 ↔ 𝑥 = 0 ) ) |
18 |
|
eqeq2 |
⊢ ( 𝑧 = 0 → ( 𝑦 = 𝑧 ↔ 𝑦 = 0 ) ) |
19 |
17 18
|
orbi12d |
⊢ ( 𝑧 = 0 → ( ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ↔ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ↔ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
21 |
16 20
|
imbi12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
22 |
11 21
|
raleqbidv |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
23 |
11 22
|
raleqbidv |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) ∧ 𝑧 = 0 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
24 |
7 10 23
|
sbcied2 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = 𝐵 ) → ( [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
25 |
4 6 24
|
sbcied2 |
⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
26 |
|
df-domn |
⊢ Domn = { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) } |
27 |
25 26
|
elrab2 |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |