Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isdomn2.t |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
3 |
|
isdomn2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
5 |
1 4 3
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
6 |
|
dfss3 |
⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ) |
7 |
2 1 4 3
|
isrrg |
⊢ ( 𝑥 ∈ 𝐸 ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
8 |
7
|
baib |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐸 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ↔ ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) ) |
10 |
9
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
11 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) |
12 |
11
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸 ) ) |
13 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐸 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ) ) |
15 |
14
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ) |
16 |
|
con34b |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
17 |
|
impexp |
⊢ ( ( ( ¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ↔ ( ¬ 𝑥 = 0 → ( ¬ 𝑦 = 0 → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) ) |
18 |
|
ioran |
⊢ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( ¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) ) |
19 |
18
|
imbi1i |
⊢ ( ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ↔ ( ( ¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
20 |
|
df-ne |
⊢ ( 𝑥 ≠ 0 ↔ ¬ 𝑥 = 0 ) |
21 |
|
con34b |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ( ¬ 𝑦 = 0 → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
22 |
20 21
|
imbi12i |
⊢ ( ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ↔ ( ¬ 𝑥 = 0 → ( ¬ 𝑦 = 0 → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) ) |
23 |
17 19 22
|
3bitr4i |
⊢ ( ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ↔ ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
24 |
16 23
|
bitri |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
25 |
24
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
26 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ↔ ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
27 |
25 26
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
28 |
27
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
29 |
10 15 28
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
30 |
6 29
|
bitr2i |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
31 |
30
|
anbi2i |
⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
32 |
5 31
|
bitri |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |