Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isdomn2.t |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
3 |
|
isdomn2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
5 |
1 4 3
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
6 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐵 ) |
7 |
2 1 4 3
|
isrrg |
⊢ ( 𝑥 ∈ 𝐸 ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
8 |
7
|
baib |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐸 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
9 |
6 8
|
syl |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑥 ∈ 𝐸 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
10 |
9
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) |
11 |
|
dfss3 |
⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ) |
12 |
|
isdomn5 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) |
13 |
10 11 12
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
15 |
5 14
|
bitri |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |