| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isdomn2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | isdomn2.t | ⊢ 𝐸  =  ( RLReg ‘ 𝑅 ) | 
						
							| 3 |  | isdomn2.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 5 | 1 4 3 | isdomn | ⊢ ( 𝑅  ∈  Domn  ↔  ( 𝑅  ∈  NzRing  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) ) ) ) | 
						
							| 6 |  | dfss3 | ⊢ ( ( 𝐵  ∖  {  0  } )  ⊆  𝐸  ↔  ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) 𝑥  ∈  𝐸 ) | 
						
							| 7 | 2 1 4 3 | isrrg | ⊢ ( 𝑥  ∈  𝐸  ↔  ( 𝑥  ∈  𝐵  ∧  ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 8 | 7 | baib | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐸  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑥  ∈  𝐵  →  ( ( 𝑥  ≠   0   →  𝑥  ∈  𝐸 )  ↔  ( 𝑥  ≠   0   →  ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) ) | 
						
							| 10 | 9 | ralbiia | ⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  𝑥  ∈  𝐸 )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 11 |  | eldifsn | ⊢ ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ≠   0  ) ) | 
						
							| 12 | 11 | imbi1i | ⊢ ( ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  →  𝑥  ∈  𝐸 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑥  ≠   0  )  →  𝑥  ∈  𝐸 ) ) | 
						
							| 13 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑥  ≠   0  )  →  𝑥  ∈  𝐸 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ≠   0   →  𝑥  ∈  𝐸 ) ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ( 𝑥  ∈  ( 𝐵  ∖  {  0  } )  →  𝑥  ∈  𝐸 )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ≠   0   →  𝑥  ∈  𝐸 ) ) ) | 
						
							| 15 | 14 | ralbii2 | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) 𝑥  ∈  𝐸  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  𝑥  ∈  𝐸 ) ) | 
						
							| 16 |  | con34b | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) )  ↔  ( ¬  ( 𝑥  =   0   ∨  𝑦  =   0  )  →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  ) ) | 
						
							| 17 |  | impexp | ⊢ ( ( ( ¬  𝑥  =   0   ∧  ¬  𝑦  =   0  )  →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  )  ↔  ( ¬  𝑥  =   0   →  ( ¬  𝑦  =   0   →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  ) ) ) | 
						
							| 18 |  | ioran | ⊢ ( ¬  ( 𝑥  =   0   ∨  𝑦  =   0  )  ↔  ( ¬  𝑥  =   0   ∧  ¬  𝑦  =   0  ) ) | 
						
							| 19 | 18 | imbi1i | ⊢ ( ( ¬  ( 𝑥  =   0   ∨  𝑦  =   0  )  →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  )  ↔  ( ( ¬  𝑥  =   0   ∧  ¬  𝑦  =   0  )  →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  ) ) | 
						
							| 20 |  | df-ne | ⊢ ( 𝑥  ≠   0   ↔  ¬  𝑥  =   0  ) | 
						
							| 21 |  | con34b | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  )  ↔  ( ¬  𝑦  =   0   →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  ) ) | 
						
							| 22 | 20 21 | imbi12i | ⊢ ( ( 𝑥  ≠   0   →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) )  ↔  ( ¬  𝑥  =   0   →  ( ¬  𝑦  =   0   →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  ) ) ) | 
						
							| 23 | 17 19 22 | 3bitr4i | ⊢ ( ( ¬  ( 𝑥  =   0   ∨  𝑦  =   0  )  →  ¬  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0  )  ↔  ( 𝑥  ≠   0   →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 24 | 16 23 | bitri | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) )  ↔  ( 𝑥  ≠   0   →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 25 | 24 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ≠   0   →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 26 |  | r19.21v | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ≠   0   →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) )  ↔  ( 𝑥  ≠   0   →  ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 27 | 25 26 | bitri | ⊢ ( ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) )  ↔  ( 𝑥  ≠   0   →  ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 28 | 27 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  𝑦  =   0  ) ) ) | 
						
							| 29 | 10 15 28 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∖  {  0  } ) 𝑥  ∈  𝐸  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) ) ) | 
						
							| 30 | 6 29 | bitr2i | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) )  ↔  ( 𝐵  ∖  {  0  } )  ⊆  𝐸 ) | 
						
							| 31 | 30 | anbi2i | ⊢ ( ( 𝑅  ∈  NzRing  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =   0   →  ( 𝑥  =   0   ∨  𝑦  =   0  ) ) )  ↔  ( 𝑅  ∈  NzRing  ∧  ( 𝐵  ∖  {  0  } )  ⊆  𝐸 ) ) | 
						
							| 32 | 5 31 | bitri | ⊢ ( 𝑅  ∈  Domn  ↔  ( 𝑅  ∈  NzRing  ∧  ( 𝐵  ∖  {  0  } )  ⊆  𝐸 ) ) |