Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn4r.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isdomn4r.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
isdomn4r.x |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
5 |
4 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
6 |
4 2
|
oppr0 |
⊢ 0 = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
8 |
5 6 7
|
isdomn4 |
⊢ ( ( oppr ‘ 𝑅 ) ∈ Domn ↔ ( ( oppr ‘ 𝑅 ) ∈ NzRing ∧ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
9 |
4
|
opprdomnb |
⊢ ( 𝑅 ∈ Domn ↔ ( oppr ‘ 𝑅 ) ∈ Domn ) |
10 |
4
|
opprnzrb |
⊢ ( 𝑅 ∈ NzRing ↔ ( oppr ‘ 𝑅 ) ∈ NzRing ) |
11 |
1 3 4 7
|
opprmul |
⊢ ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑎 · 𝑐 ) |
12 |
1 3 4 7
|
opprmul |
⊢ ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) = ( 𝑏 · 𝑐 ) |
13 |
11 12
|
eqeq12i |
⊢ ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) ↔ ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) ) |
14 |
13
|
imbi1i |
⊢ ( ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) |
15 |
14
|
3ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) |
16 |
|
ralrot3 |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) |
17 |
15 16
|
bitr3i |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) |
18 |
10 17
|
anbi12i |
⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ↔ ( ( oppr ‘ 𝑅 ) ∈ NzRing ∧ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
19 |
8 9 18
|
3bitr4i |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ) |