| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bi2.04 | ⊢ ( ( ¬  𝑎  =   0   →  ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) )  ↔  ( ( 𝑎  ·  𝑏 )  =   0   →  ( ¬  𝑎  =   0   →  𝑏  =   0  ) ) ) | 
						
							| 2 |  | df-ne | ⊢ ( 𝑎  ≠   0   ↔  ¬  𝑎  =   0  ) | 
						
							| 3 | 2 | imbi1i | ⊢ ( ( 𝑎  ≠   0   →  ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) )  ↔  ( ¬  𝑎  =   0   →  ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) ) ) | 
						
							| 4 |  | df-or | ⊢ ( ( 𝑎  =   0   ∨  𝑏  =   0  )  ↔  ( ¬  𝑎  =   0   →  𝑏  =   0  ) ) | 
						
							| 5 | 4 | imbi2i | ⊢ ( ( ( 𝑎  ·  𝑏 )  =   0   →  ( 𝑎  =   0   ∨  𝑏  =   0  ) )  ↔  ( ( 𝑎  ·  𝑏 )  =   0   →  ( ¬  𝑎  =   0   →  𝑏  =   0  ) ) ) | 
						
							| 6 | 1 3 5 | 3bitr4ri | ⊢ ( ( ( 𝑎  ·  𝑏 )  =   0   →  ( 𝑎  =   0   ∨  𝑏  =   0  ) )  ↔  ( 𝑎  ≠   0   →  ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) ) ) | 
						
							| 7 | 6 | 2ralbii | ⊢ ( ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ·  𝑏 )  =   0   →  ( 𝑎  =   0   ∨  𝑏  =   0  ) )  ↔  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎  ≠   0   →  ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) ) ) | 
						
							| 8 |  | r19.21v | ⊢ ( ∀ 𝑏  ∈  𝐵 ( 𝑎  ≠   0   →  ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) )  ↔  ( 𝑎  ≠   0   →  ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) ) ) | 
						
							| 9 | 8 | ralbii | ⊢ ( ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎  ≠   0   →  ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) )  ↔  ∀ 𝑎  ∈  𝐵 ( 𝑎  ≠   0   →  ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) ) ) | 
						
							| 10 |  | raldifsnb | ⊢ ( ∀ 𝑎  ∈  𝐵 ( 𝑎  ≠   0   →  ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) )  ↔  ∀ 𝑎  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) ) | 
						
							| 11 | 7 9 10 | 3bitri | ⊢ ( ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ·  𝑏 )  =   0   →  ( 𝑎  =   0   ∨  𝑏  =   0  ) )  ↔  ∀ 𝑎  ∈  ( 𝐵  ∖  {  0  } ) ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ·  𝑏 )  =   0   →  𝑏  =   0  ) ) |