Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn6.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isdomn6.t |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
3 |
|
isdomn6.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
1 2 3
|
isdomn2 |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
5 |
2 1
|
rrgss |
⊢ 𝐸 ⊆ 𝐵 |
6 |
5
|
a1i |
⊢ ( 𝑅 ∈ NzRing → 𝐸 ⊆ 𝐵 ) |
7 |
2 3
|
rrgnz |
⊢ ( 𝑅 ∈ NzRing → ¬ 0 ∈ 𝐸 ) |
8 |
|
ssdifsn |
⊢ ( 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐸 ⊆ 𝐵 ∧ ¬ 0 ∈ 𝐸 ) ) |
9 |
6 7 8
|
sylanbrc |
⊢ ( 𝑅 ∈ NzRing → 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) ) |
10 |
|
sssseq |
⊢ ( 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) → ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑅 ∈ NzRing → ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |
12 |
11
|
pm5.32i |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |
13 |
4 12
|
bitri |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) ) |