Metamath Proof Explorer


Theorem isdomn6

Description: A ring is a domain iff nonzero-divisors are all the nonzero elements. (Contributed by Thierry Arnoux, 6-May-2025)

Ref Expression
Hypotheses isdomn6.b 𝐵 = ( Base ‘ 𝑅 )
isdomn6.t 𝐸 = ( RLReg ‘ 𝑅 )
isdomn6.z 0 = ( 0g𝑅 )
Assertion isdomn6 ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) )

Proof

Step Hyp Ref Expression
1 isdomn6.b 𝐵 = ( Base ‘ 𝑅 )
2 isdomn6.t 𝐸 = ( RLReg ‘ 𝑅 )
3 isdomn6.z 0 = ( 0g𝑅 )
4 1 2 3 isdomn2 ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) )
5 2 1 rrgss 𝐸𝐵
6 5 a1i ( 𝑅 ∈ NzRing → 𝐸𝐵 )
7 2 3 rrgnz ( 𝑅 ∈ NzRing → ¬ 0𝐸 )
8 ssdifsn ( 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐸𝐵 ∧ ¬ 0𝐸 ) )
9 6 7 8 sylanbrc ( 𝑅 ∈ NzRing → 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) )
10 sssseq ( 𝐸 ⊆ ( 𝐵 ∖ { 0 } ) → ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ( 𝐵 ∖ { 0 } ) = 𝐸 ) )
11 9 10 syl ( 𝑅 ∈ NzRing → ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ( 𝐵 ∖ { 0 } ) = 𝐸 ) )
12 11 pm5.32i ( ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) )
13 4 12 bitri ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) = 𝐸 ) )