| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
isdrng.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
isdrng.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) |
| 5 |
4 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 7 |
6 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 9 |
8 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 10 |
9
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { ( 0g ‘ 𝑟 ) } = { 0 } ) |
| 11 |
7 10
|
difeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( Base ‘ 𝑟 ) ∖ { ( 0g ‘ 𝑟 ) } ) = ( 𝐵 ∖ { 0 } ) ) |
| 12 |
5 11
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( Unit ‘ 𝑟 ) = ( ( Base ‘ 𝑟 ) ∖ { ( 0g ‘ 𝑟 ) } ) ↔ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
| 13 |
|
df-drng |
⊢ DivRing = { 𝑟 ∈ Ring ∣ ( Unit ‘ 𝑟 ) = ( ( Base ‘ 𝑟 ) ∖ { ( 0g ‘ 𝑟 ) } ) } |
| 14 |
12 13
|
elrab2 |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |