Step |
Hyp |
Ref |
Expression |
1 |
|
isdrng4.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isdrng4.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
isdrng4.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
isdrng4.x |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
isdrng4.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
6 |
|
isdrng4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
1 5 2
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
8 |
6
|
biantrurd |
⊢ ( 𝜑 → ( 𝑈 = ( 𝐵 ∖ { 0 } ) ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) ) |
9 |
7 8
|
bitr4id |
⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ↔ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
10 |
5 3
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝑈 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 1 ∈ 𝑈 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 𝑈 = ( 𝐵 ∖ { 0 } ) ) |
14 |
12 13
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 1 ∈ ( 𝐵 ∖ { 0 } ) ) |
15 |
|
eldifsni |
⊢ ( 1 ∈ ( 𝐵 ∖ { 0 } ) → 1 ≠ 0 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → 1 ≠ 0 ) |
17 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝜑 ) |
18 |
13
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝑈 ↔ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ) |
19 |
18
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ 𝑈 ) |
20 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑅 ∈ Ring ) |
21 |
1 5
|
unitcl |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵 ) |
22 |
21
|
ad5antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑥 ∈ 𝐵 ) |
23 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑦 ∈ 𝐵 ) |
24 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑧 ∈ 𝐵 ) |
25 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑦 · 𝑥 ) = 1 ) |
26 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑥 · 𝑧 ) = 1 ) |
27 |
1 2 3 4 5 20 22 23 24 25 26
|
ringinveu |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → 𝑧 = 𝑦 ) |
28 |
27
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑥 · 𝑧 ) = ( 𝑥 · 𝑦 ) ) |
29 |
28 26
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑥 · 𝑧 ) = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
30 |
21
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ∈ 𝐵 ) |
31 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
32 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
33 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
34 |
5 3 31 32 33
|
isunit |
⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) 1 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ) |
35 |
34
|
simprbi |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
36 |
35
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
37 |
32 1
|
opprbas |
⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
38 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
39 |
37 33 38
|
dvdsr2 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) ) |
40 |
39
|
biimpa |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) |
41 |
1 4 32 38
|
opprmul |
⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 · 𝑦 ) |
42 |
41
|
eqeq1i |
⊢ ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ↔ ( 𝑥 · 𝑦 ) = 1 ) |
43 |
42
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
44 |
40 43
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
45 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 · 𝑦 ) = ( 𝑥 · 𝑧 ) ) |
46 |
45
|
eqeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 · 𝑦 ) = 1 ↔ ( 𝑥 · 𝑧 ) = 1 ) ) |
47 |
46
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 · 𝑧 ) = 1 ) |
48 |
44 47
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑥 · 𝑧 ) = 1 ) |
49 |
30 36 48
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑥 · 𝑧 ) = 1 ) |
50 |
29 49
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
51 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑦 · 𝑥 ) = 1 ) |
52 |
50 51
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
53 |
52
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
54 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐵 ) |
55 |
34
|
simplbi |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
57 |
1 31 4
|
dvdsr2 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ( ∥r ‘ 𝑅 ) 1 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) ) |
58 |
57
|
biimpa |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( ∥r ‘ 𝑅 ) 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
59 |
54 56 58
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
60 |
53 59
|
reximddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
61 |
17 19 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) |
63 |
16 62
|
jca |
⊢ ( ( 𝜑 ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) → ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) |
64 |
1 5
|
unitss |
⊢ 𝑈 ⊆ 𝐵 |
65 |
64
|
a1i |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑈 ⊆ 𝐵 ) |
66 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑅 ∈ Ring ) |
67 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 1 ≠ 0 ) |
68 |
5 2 3
|
0unit |
⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 ) ) |
69 |
68
|
necon3bbid |
⊢ ( 𝑅 ∈ Ring → ( ¬ 0 ∈ 𝑈 ↔ 1 ≠ 0 ) ) |
70 |
69
|
biimpar |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ≠ 0 ) → ¬ 0 ∈ 𝑈 ) |
71 |
66 67 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → ¬ 0 ∈ 𝑈 ) |
72 |
|
ssdifsn |
⊢ ( 𝑈 ⊆ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑈 ⊆ 𝐵 ∧ ¬ 0 ∈ 𝑈 ) ) |
73 |
65 71 72
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑈 ⊆ ( 𝐵 ∖ { 0 } ) ) |
74 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) |
75 |
74
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ∈ 𝐵 ) |
76 |
|
simpr |
⊢ ( ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑦 · 𝑥 ) = 1 ) |
77 |
76
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
78 |
77
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) |
79 |
57
|
biimpar |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
80 |
75 78 79
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ( ∥r ‘ 𝑅 ) 1 ) |
81 |
|
simpl |
⊢ ( ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
82 |
81
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
83 |
82
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = 1 ) |
84 |
83 43
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) |
85 |
39
|
biimpar |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
86 |
75 84 85
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
87 |
80 86 34
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ∧ ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) → 𝑥 ∈ 𝑈 ) |
88 |
87
|
ex |
⊢ ( ( ( 𝜑 ∧ 1 ≠ 0 ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → 𝑥 ∈ 𝑈 ) ) |
89 |
88
|
ralimdva |
⊢ ( ( 𝜑 ∧ 1 ≠ 0 ) → ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝑈 ) ) |
90 |
89
|
impr |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝑈 ) |
91 |
|
dfss3 |
⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝑈 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝑈 ) |
92 |
90 91
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → ( 𝐵 ∖ { 0 } ) ⊆ 𝑈 ) |
93 |
73 92
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) → 𝑈 = ( 𝐵 ∖ { 0 } ) ) |
94 |
63 93
|
impbida |
⊢ ( 𝜑 → ( 𝑈 = ( 𝐵 ∖ { 0 } ) ↔ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) ) |
95 |
9 94
|
bitrd |
⊢ ( 𝜑 → ( 𝑅 ∈ DivRing ↔ ( 1 ≠ 0 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∃ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 1 ∧ ( 𝑦 · 𝑥 ) = 1 ) ) ) ) |