Step |
Hyp |
Ref |
Expression |
1 |
|
isdrngd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
2 |
|
isdrngd.t |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
3 |
|
isdrngd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
4 |
|
isdrngd.u |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) |
5 |
|
isdrngd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
isdrngd.n |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
7 |
|
isdrngd.o |
⊢ ( 𝜑 → 1 ≠ 0 ) |
8 |
|
isdrngd.i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ 𝐵 ) |
9 |
|
isdrngd.k |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝐼 · 𝑥 ) = 1 ) |
10 |
|
difss |
⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 |
11 |
10 1
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐵 ∖ { 0 } ) ⊆ ( Base ‘ 𝑅 ) ) |
12 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) |
13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
13 14
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
16 |
12 15
|
ressbas2 |
⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ ( Base ‘ 𝑅 ) → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
17 |
11 16
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
18 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
19 |
1 18
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
20 |
|
difexg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V ) |
21 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
22 |
13 21
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
23 |
12 22
|
ressplusg |
⊢ ( ( 𝐵 ∖ { 0 } ) ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
24 |
19 20 23
|
3syl |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
25 |
2 24
|
eqtrd |
⊢ ( 𝜑 → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
26 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) |
27 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) |
28 |
14 21
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
29 |
5 28
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
30 |
29
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
31 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
32 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ) |
34 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
35 |
34 1
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑥 · 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) ) |
36 |
30 33 35
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) ) |
37 |
36
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
38 |
37
|
3adant2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
39 |
38
|
3adant3r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
40 |
|
eldifsn |
⊢ ( ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ 𝐵 ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) |
41 |
39 6 40
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
42 |
27 41
|
syl3an3b |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
43 |
26 42
|
syl3an2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
44 |
14 21
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
45 |
44
|
ex |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) |
46 |
5 45
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) |
47 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) |
48 |
31 32 47
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) ) |
49 |
|
eqidd |
⊢ ( 𝜑 → 𝑧 = 𝑧 ) |
50 |
2 34 49
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) ) |
51 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
52 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 · 𝑧 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) |
53 |
2 51 52
|
oveq123d |
⊢ ( 𝜑 → ( 𝑥 · ( 𝑦 · 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
54 |
50 53
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) |
55 |
46 48 54
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
56 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐵 ) |
57 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 0 } ) → 𝑦 ∈ 𝐵 ) |
58 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐵 ∖ { 0 } ) → 𝑧 ∈ 𝐵 ) |
59 |
56 57 58
|
3anim123i |
⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑧 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) |
60 |
55 59
|
impel |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑧 ∈ ( 𝐵 ∖ { 0 } ) ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
61 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
62 |
14 61
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
63 |
5 62
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
64 |
63 4 1
|
3eltr4d |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
65 |
|
eldifsn |
⊢ ( 1 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 1 ∈ 𝐵 ∧ 1 ≠ 0 ) ) |
66 |
64 7 65
|
sylanbrc |
⊢ ( 𝜑 → 1 ∈ ( 𝐵 ∖ { 0 } ) ) |
67 |
14 21 61
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
68 |
67
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
69 |
5 68
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
70 |
2 4 51
|
oveq123d |
⊢ ( 𝜑 → ( 1 · 𝑥 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
71 |
70
|
eqeq1d |
⊢ ( 𝜑 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) ) |
72 |
69 31 71
|
3imtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 1 · 𝑥 ) = 𝑥 ) ) |
73 |
72
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) = 𝑥 ) |
74 |
73
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
75 |
26 74
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
76 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 1 ≠ 0 ) |
77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → 𝐼 = 0 ) |
78 |
77
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → ( 𝐼 · 𝑥 ) = ( 0 · 𝑥 ) ) |
79 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → ( 𝐼 · 𝑥 ) = 1 ) |
80 |
31
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
81 |
80
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
82 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
83 |
14 21 82
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
84 |
5 81 83
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
85 |
2 3 51
|
oveq123d |
⊢ ( 𝜑 → ( 0 · 𝑥 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 0 · 𝑥 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
87 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
88 |
84 86 87
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 0 · 𝑥 ) = 0 ) |
89 |
88
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → ( 0 · 𝑥 ) = 0 ) |
90 |
78 79 89
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ∧ 𝐼 = 0 ) → 1 = 0 ) |
91 |
76 90
|
mteqand |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ≠ 0 ) |
92 |
|
eldifsn |
⊢ ( 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝐼 ∈ 𝐵 ∧ 𝐼 ≠ 0 ) ) |
93 |
8 91 92
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ) |
94 |
26 93
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝐼 ∈ ( 𝐵 ∖ { 0 } ) ) |
95 |
26 9
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝐼 · 𝑥 ) = 1 ) |
96 |
17 25 43 60 66 75 94 95
|
isgrpd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ) |
97 |
3
|
sneqd |
⊢ ( 𝜑 → { 0 } = { ( 0g ‘ 𝑅 ) } ) |
98 |
1 97
|
difeq12d |
⊢ ( 𝜑 → ( 𝐵 ∖ { 0 } ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
99 |
98
|
oveq2d |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
100 |
99
|
eleq1d |
⊢ ( 𝜑 → ( ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ↔ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) |
101 |
100
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ) ↔ ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) ) |
102 |
5 96 101
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) |
103 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
104 |
14 82 103
|
isdrng2 |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∈ Grp ) ) |
105 |
102 104
|
sylibr |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |