| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrngd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 2 |
|
isdrngd.t |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
| 3 |
|
isdrngd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
| 4 |
|
isdrngd.u |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) |
| 5 |
|
isdrngd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
isdrngd.n |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
| 7 |
|
isdrngd.o |
⊢ ( 𝜑 → 1 ≠ 0 ) |
| 8 |
|
isdrngd.i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → 𝐼 ∈ 𝐵 ) |
| 9 |
|
isdrngrd.k |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 · 𝐼 ) = 1 ) |
| 10 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 12 |
10 11
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 13 |
1 12
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 16 |
10 15
|
oppr0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
| 17 |
3 16
|
eqtrdi |
⊢ ( 𝜑 → 0 = ( 0g ‘ ( oppr ‘ 𝑅 ) ) ) |
| 18 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 19 |
10 18
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
| 20 |
4 19
|
eqtrdi |
⊢ ( 𝜑 → 1 = ( 1r ‘ ( oppr ‘ 𝑅 ) ) ) |
| 21 |
10
|
opprring |
⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 22 |
5 21
|
syl |
⊢ ( 𝜑 → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 23 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
| 24 |
|
neeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≠ 0 ↔ 𝑥 ≠ 0 ) ) |
| 25 |
23 24
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ) |
| 26 |
25
|
3anbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ) |
| 28 |
27
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ↔ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) |
| 29 |
26 28
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) ) |
| 30 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 31 |
|
neeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≠ 0 ↔ 𝑧 ≠ 0 ) ) |
| 32 |
30 31
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ) |
| 33 |
32
|
3anbi3d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ) |
| 35 |
34
|
neeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ↔ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) |
| 36 |
33 35
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) ) ) |
| 37 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → · = ( .r ‘ 𝑅 ) ) |
| 38 |
37
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 39 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 40 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
| 41 |
11 39 10 40
|
opprmul |
⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) |
| 42 |
38 41
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 43 |
42 6
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ) |
| 44 |
43
|
3com23 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ≠ 0 ) |
| 45 |
36 44
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) |
| 46 |
29 45
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑧 ) ≠ 0 ) |
| 47 |
11 39 10 40
|
opprmul |
⊢ ( 𝐼 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝐼 ) |
| 48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → · = ( .r ‘ 𝑅 ) ) |
| 49 |
48
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 · 𝐼 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝐼 ) ) |
| 50 |
49 9
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝐼 ) = 1 ) |
| 51 |
47 50
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) → ( 𝐼 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = 1 ) |
| 52 |
13 14 17 20 22 46 7 8 51
|
isdrngd |
⊢ ( 𝜑 → ( oppr ‘ 𝑅 ) ∈ DivRing ) |
| 53 |
10
|
opprdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( oppr ‘ 𝑅 ) ∈ DivRing ) |
| 54 |
52 53
|
sylibr |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |