Step |
Hyp |
Ref |
Expression |
1 |
|
isdrs.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
isdrs.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
fveq2 |
⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐾 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = 𝐵 ) |
5 |
|
fveq2 |
⊢ ( 𝑓 = 𝐾 → ( le ‘ 𝑓 ) = ( le ‘ 𝐾 ) ) |
6 |
5 2
|
eqtr4di |
⊢ ( 𝑓 = 𝐾 → ( le ‘ 𝑓 ) = ≤ ) |
7 |
6
|
sbceq1d |
⊢ ( 𝑓 = 𝐾 → ( [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ [ ≤ / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) ) |
8 |
4 7
|
sbceqbid |
⊢ ( 𝑓 = 𝐾 → ( [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ [ 𝐵 / 𝑏 ] [ ≤ / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) ) |
9 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
10 |
2
|
fvexi |
⊢ ≤ ∈ V |
11 |
|
neeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → ( 𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
13 |
|
rexeq |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) |
14 |
13
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) |
15 |
14
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ) |
16 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑧 ↔ 𝑥 ≤ 𝑧 ) ) |
17 |
|
breq |
⊢ ( 𝑟 = ≤ → ( 𝑦 𝑟 𝑧 ↔ 𝑦 ≤ 𝑧 ) ) |
18 |
16 17
|
anbi12d |
⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑟 = ≤ → ( ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
20 |
19
|
2ralbidv |
⊢ ( 𝑟 = ≤ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
21 |
15 20
|
sylan9bb |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
22 |
12 21
|
anbi12d |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑟 = ≤ ) → ( ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) |
23 |
9 10 22
|
sbc2ie |
⊢ ( [ 𝐵 / 𝑏 ] [ ≤ / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |
24 |
8 23
|
bitrdi |
⊢ ( 𝑓 = 𝐾 → ( [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) |
25 |
|
df-drs |
⊢ Dirset = { 𝑓 ∈ Proset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ( 𝑥 𝑟 𝑧 ∧ 𝑦 𝑟 𝑧 ) ) } |
26 |
24 25
|
elrab2 |
⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) |
27 |
|
3anass |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ↔ ( 𝐾 ∈ Proset ∧ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) ) |
28 |
26 27
|
bitr4i |
⊢ ( 𝐾 ∈ Dirset ↔ ( 𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧 ) ) ) |