| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drsbn0.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | drsdirfi.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | drsprs | ⊢ ( 𝐾  ∈  Dirset  →  𝐾  ∈   Proset  ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐾  ∈  Dirset  ∧  𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) )  →  𝐾  ∈  Dirset ) | 
						
							| 5 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin )  →  𝑥  ∈  𝒫  𝐵 ) | 
						
							| 6 | 5 | elpwid | ⊢ ( 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin )  →  𝑥  ⊆  𝐵 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐾  ∈  Dirset  ∧  𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) )  →  𝑥  ⊆  𝐵 ) | 
						
							| 8 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐾  ∈  Dirset  ∧  𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 10 | 1 2 | drsdirfi | ⊢ ( ( 𝐾  ∈  Dirset  ∧  𝑥  ⊆  𝐵  ∧  𝑥  ∈  Fin )  →  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 ) | 
						
							| 11 | 4 7 9 10 | syl3anc | ⊢ ( ( 𝐾  ∈  Dirset  ∧  𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) )  →  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( 𝐾  ∈  Dirset  →  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 ) | 
						
							| 13 | 3 12 | jca | ⊢ ( 𝐾  ∈  Dirset  →  ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  →  𝐾  ∈   Proset  ) | 
						
							| 15 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐵 | 
						
							| 16 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 17 | 15 16 | elini | ⊢ ∅  ∈  ( 𝒫  𝐵  ∩  Fin ) | 
						
							| 18 |  | raleq | ⊢ ( 𝑥  =  ∅  →  ( ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦  ↔  ∀ 𝑧  ∈  ∅ 𝑧  ≤  𝑦 ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑥  =  ∅  →  ( ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦  ↔  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ∅ 𝑧  ≤  𝑦 ) ) | 
						
							| 20 | 19 | rspcv | ⊢ ( ∅  ∈  ( 𝒫  𝐵  ∩  Fin )  →  ( ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦  →  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ∅ 𝑧  ≤  𝑦 ) ) | 
						
							| 21 | 17 20 | ax-mp | ⊢ ( ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦  →  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ∅ 𝑧  ≤  𝑦 ) | 
						
							| 22 |  | rexn0 | ⊢ ( ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ∅ 𝑧  ≤  𝑦  →  𝐵  ≠  ∅ ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦  →  𝐵  ≠  ∅ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  →  𝐵  ≠  ∅ ) | 
						
							| 25 |  | raleq | ⊢ ( 𝑥  =  { 𝑎 ,  𝑏 }  →  ( ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦  ↔  ∀ 𝑧  ∈  { 𝑎 ,  𝑏 } 𝑧  ≤  𝑦 ) ) | 
						
							| 26 | 25 | rexbidv | ⊢ ( 𝑥  =  { 𝑎 ,  𝑏 }  →  ( ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦  ↔  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  { 𝑎 ,  𝑏 } 𝑧  ≤  𝑦 ) ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 ) | 
						
							| 28 |  | prelpwi | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  { 𝑎 ,  𝑏 }  ∈  𝒫  𝐵 ) | 
						
							| 29 |  | prfi | ⊢ { 𝑎 ,  𝑏 }  ∈  Fin | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  { 𝑎 ,  𝑏 }  ∈  Fin ) | 
						
							| 31 | 28 30 | elind | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  { 𝑎 ,  𝑏 }  ∈  ( 𝒫  𝐵  ∩  Fin ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  { 𝑎 ,  𝑏 }  ∈  ( 𝒫  𝐵  ∩  Fin ) ) | 
						
							| 33 | 26 27 32 | rspcdva | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  { 𝑎 ,  𝑏 } 𝑧  ≤  𝑦 ) | 
						
							| 34 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 35 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 36 |  | breq1 | ⊢ ( 𝑧  =  𝑎  →  ( 𝑧  ≤  𝑦  ↔  𝑎  ≤  𝑦 ) ) | 
						
							| 37 |  | breq1 | ⊢ ( 𝑧  =  𝑏  →  ( 𝑧  ≤  𝑦  ↔  𝑏  ≤  𝑦 ) ) | 
						
							| 38 | 34 35 36 37 | ralpr | ⊢ ( ∀ 𝑧  ∈  { 𝑎 ,  𝑏 } 𝑧  ≤  𝑦  ↔  ( 𝑎  ≤  𝑦  ∧  𝑏  ≤  𝑦 ) ) | 
						
							| 39 | 38 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  { 𝑎 ,  𝑏 } 𝑧  ≤  𝑦  ↔  ∃ 𝑦  ∈  𝐵 ( 𝑎  ≤  𝑦  ∧  𝑏  ≤  𝑦 ) ) | 
						
							| 40 | 33 39 | sylib | ⊢ ( ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ∃ 𝑦  ∈  𝐵 ( 𝑎  ≤  𝑦  ∧  𝑏  ≤  𝑦 ) ) | 
						
							| 41 | 40 | ralrimivva | ⊢ ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  →  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( 𝑎  ≤  𝑦  ∧  𝑏  ≤  𝑦 ) ) | 
						
							| 42 | 1 2 | isdrs | ⊢ ( 𝐾  ∈  Dirset  ↔  ( 𝐾  ∈   Proset   ∧  𝐵  ≠  ∅  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( 𝑎  ≤  𝑦  ∧  𝑏  ≤  𝑦 ) ) ) | 
						
							| 43 | 14 24 41 42 | syl3anbrc | ⊢ ( ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 )  →  𝐾  ∈  Dirset ) | 
						
							| 44 | 13 43 | impbii | ⊢ ( 𝐾  ∈  Dirset  ↔  ( 𝐾  ∈   Proset   ∧  ∀ 𝑥  ∈  ( 𝒫  𝐵  ∩  Fin ) ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑥 𝑧  ≤  𝑦 ) ) |