Metamath Proof Explorer


Theorem iseqsetvlem

Description: Lemma for iseqsetv-cleq . (Contributed by Wolf Lammen, 17-Aug-2025) (Proof modification is discouraged.)

Ref Expression
Assertion iseqsetvlem ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑧 𝑧 = 𝐴 )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = 𝐴𝑧 = 𝐴 ) )
2 1 cbvexvw ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑧 𝑧 = 𝐴 )