| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iserabs.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iserabs.2 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐴 ) | 
						
							| 3 |  | iserabs.3 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐺 )  ⇝  𝐵 ) | 
						
							| 4 |  | iserabs.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | iserabs.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 6 |  | iserabs.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 7 | 1 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 8 | 7 | mptex | ⊢ ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) )  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) )  ∈  V ) | 
						
							| 10 | 1 4 5 | serf | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℂ ) | 
						
							| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 12 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) )  =  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) )  =  ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) ) | 
						
							| 14 |  | fvex | ⊢ ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ∈  V | 
						
							| 15 | 12 13 14 | fvmpt | ⊢ ( 𝑛  ∈  𝑍  →  ( ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 )  =  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 )  =  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 17 | 1 2 9 4 11 16 | climabs | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) )  ⇝  ( abs ‘ 𝐴 ) ) | 
						
							| 18 | 11 | abscld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 19 | 16 18 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 20 | 5 | abscld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 21 | 6 20 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 22 | 1 4 21 | serfre | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐺 ) : 𝑍 ⟶ ℝ ) | 
						
							| 23 | 22 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  𝑍 ) | 
						
							| 25 | 24 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 26 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑛 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 27 | 26 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑛 )  →  𝑘  ∈  𝑍 ) | 
						
							| 28 | 27 5 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 29 | 28 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 30 | 27 6 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 32 | 25 29 31 | seqabs | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ≤  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 33 | 16 32 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑚  ∈  𝑍  ↦  ( abs ‘ ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 )  ≤  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑛 ) ) | 
						
							| 34 | 1 4 17 3 19 23 33 | climle | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ≤  𝐵 ) |