Step |
Hyp |
Ref |
Expression |
1 |
|
iserabs.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iserabs.2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) |
3 |
|
iserabs.3 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 ) |
4 |
|
iserabs.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
iserabs.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
6 |
|
iserabs.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
7 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
8 |
7
|
mptex |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ∈ V ) |
10 |
1 4 5
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
11 |
10
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
12 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
13 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) |
14 |
|
fvex |
⊢ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ∈ V |
15 |
12 13 14
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
17 |
1 2 9 4 11 16
|
climabs |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ⇝ ( abs ‘ 𝐴 ) ) |
18 |
11
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ∈ ℝ ) |
19 |
16 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
20 |
5
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
21 |
6 20
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
22 |
1 4 21
|
serfre |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ ) |
23 |
22
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
25 |
24 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
26 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
27 |
26 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
28 |
27 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
29 |
28
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
30 |
27 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
32 |
25 29 31
|
seqabs |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
33 |
16 32
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
34 |
1 4 17 3 19 23 33
|
climle |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 𝐵 ) |