Step |
Hyp |
Ref |
Expression |
1 |
|
iseralt.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iseralt.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iseralt.3 |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) |
4 |
|
iseralt.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
5 |
|
iseralt.5 |
⊢ ( 𝜑 → 𝐺 ⇝ 0 ) |
6 |
|
iseralt.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
7 |
|
seqex |
⊢ seq 𝑀 ( + , 𝐹 ) ∈ V |
8 |
7
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ V ) |
9 |
|
climrel |
⊢ Rel ⇝ |
10 |
9
|
brrelex1i |
⊢ ( 𝐺 ⇝ 0 → 𝐺 ∈ V ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
12 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
13 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
15 |
1 2 11 12 14
|
clim0c |
⊢ ( 𝜑 → ( 𝐺 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 ) ) |
16 |
5 15
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 ) |
17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
18 |
17 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
19 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
20 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
21 |
18 19 20
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
22 |
|
peano2uz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
23 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
24 |
23
|
breq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) ) |
25 |
24
|
rspcv |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) ) |
26 |
21 22 25
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) ) |
27 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑛 ∈ ℤ ) |
28 |
27
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ℤ ) |
29 |
28
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ℂ ) |
30 |
19 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
31 |
30
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℤ ) |
32 |
31
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℂ ) |
33 |
29 32
|
subcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℂ ) |
34 |
|
2cnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 2 ∈ ℂ ) |
35 |
|
2ne0 |
⊢ 2 ≠ 0 |
36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 2 ≠ 0 ) |
37 |
33 34 36
|
divcan2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) = ( 𝑛 − 𝑗 ) ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) = ( 𝑗 + ( 𝑛 − 𝑗 ) ) ) |
39 |
32 29
|
pncan3d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 𝑛 − 𝑗 ) ) = 𝑛 ) |
40 |
38 39
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 = ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 𝑛 = ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) |
42 |
41
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) ) |
43 |
42
|
fvoveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
44 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 𝜑 ) |
45 |
|
simpl |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ 𝑍 ) |
46 |
45
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 𝑗 ∈ 𝑍 ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) |
48 |
28 31
|
zsubcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℤ ) |
49 |
48
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℝ ) |
50 |
|
2rp |
⊢ 2 ∈ ℝ+ |
51 |
50
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 2 ∈ ℝ+ ) |
52 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑗 ≤ 𝑛 ) |
53 |
52
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ≤ 𝑛 ) |
54 |
28
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ℝ ) |
55 |
31
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℝ ) |
56 |
54 55
|
subge0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 0 ≤ ( 𝑛 − 𝑗 ) ↔ 𝑗 ≤ 𝑛 ) ) |
57 |
53 56
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( 𝑛 − 𝑗 ) ) |
58 |
49 51 57
|
divge0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( ( 𝑛 − 𝑗 ) / 2 ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 0 ≤ ( ( 𝑛 − 𝑗 ) / 2 ) ) |
60 |
|
elnn0z |
⊢ ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ↔ ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑛 − 𝑗 ) / 2 ) ) ) |
61 |
47 59 60
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ) |
62 |
1 2 3 4 5 6
|
iseraltlem3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
63 |
62
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
64 |
44 46 61 63
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
65 |
43 64
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
66 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
67 |
66
|
oveq2i |
⊢ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − ( 2 / 2 ) ) = ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) |
68 |
|
peano2cn |
⊢ ( ( 𝑛 − 𝑗 ) ∈ ℂ → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℂ ) |
69 |
33 68
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℂ ) |
70 |
69 34 34 36
|
divsubdird |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) / 2 ) = ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − ( 2 / 2 ) ) ) |
71 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
72 |
71
|
oveq2i |
⊢ ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) = ( ( ( 𝑛 − 𝑗 ) + 1 ) − ( 1 + 1 ) ) |
73 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
74 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 ∈ ℂ ) |
75 |
33 74 74
|
pnpcan2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) − ( 1 + 1 ) ) = ( ( 𝑛 − 𝑗 ) − 1 ) ) |
76 |
72 75
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) = ( ( 𝑛 − 𝑗 ) − 1 ) ) |
77 |
76
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) / 2 ) = ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) |
78 |
70 77
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − ( 2 / 2 ) ) = ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) |
79 |
67 78
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) = ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) |
80 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) = ( 2 · ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) ) |
81 |
|
subcl |
⊢ ( ( ( 𝑛 − 𝑗 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 𝑗 ) − 1 ) ∈ ℂ ) |
82 |
33 73 81
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) − 1 ) ∈ ℂ ) |
83 |
82 34 36
|
divcan2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) = ( ( 𝑛 − 𝑗 ) − 1 ) ) |
84 |
29 32 74
|
sub32d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) − 1 ) = ( ( 𝑛 − 1 ) − 𝑗 ) ) |
85 |
80 83 84
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) = ( ( 𝑛 − 1 ) − 𝑗 ) ) |
86 |
85
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) = ( 𝑗 + ( ( 𝑛 − 1 ) − 𝑗 ) ) ) |
87 |
|
subcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑛 − 1 ) ∈ ℂ ) |
88 |
29 73 87
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 1 ) ∈ ℂ ) |
89 |
32 88
|
pncan3d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( ( 𝑛 − 1 ) − 𝑗 ) ) = ( 𝑛 − 1 ) ) |
90 |
86 89
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) = ( 𝑛 − 1 ) ) |
91 |
90
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) = ( ( 𝑛 − 1 ) + 1 ) ) |
92 |
|
npcan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
93 |
29 73 92
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
94 |
91 93
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 = ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 𝑛 = ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) |
96 |
95
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) ) |
97 |
96
|
fvoveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
98 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 𝜑 ) |
99 |
45
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 𝑗 ∈ 𝑍 ) |
100 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) |
101 |
|
uznn0sub |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑛 − 𝑗 ) ∈ ℕ0 ) |
102 |
101
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℕ0 ) |
103 |
|
nn0p1nn |
⊢ ( ( 𝑛 − 𝑗 ) ∈ ℕ0 → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℕ ) |
104 |
102 103
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℕ ) |
105 |
104
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℝ+ ) |
106 |
105
|
rphalfcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℝ+ ) |
107 |
106
|
rpgt0d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 < ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 0 < ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ) |
109 |
|
elnnz |
⊢ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℕ ↔ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ) ) |
110 |
100 108 109
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℕ ) |
111 |
|
nnm1nn0 |
⊢ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℕ → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) |
112 |
110 111
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) |
113 |
1 2 3 4 5 6
|
iseraltlem3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
114 |
113
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
115 |
98 99 112 114
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
116 |
97 115
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
117 |
|
zeo |
⊢ ( ( 𝑛 − 𝑗 ) ∈ ℤ → ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ∨ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) ) |
118 |
48 117
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ∨ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) ) |
119 |
65 116 118
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
120 |
1
|
peano2uzs |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝑗 + 1 ) ∈ 𝑍 ) |
121 |
120
|
adantr |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑗 + 1 ) ∈ 𝑍 ) |
122 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝑍 ⟶ ℝ ∧ ( 𝑗 + 1 ) ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
123 |
3 121 122
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
124 |
1 2 3 4 5
|
iseraltlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ 𝑍 ) → 0 ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
125 |
121 124
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
126 |
123 125
|
absidd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
127 |
119 126
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
128 |
127
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
129 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
130 |
129
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 1 ∈ ℝ ) |
131 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
132 |
131
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 1 ≠ 0 ) |
133 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
134 |
133 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
135 |
134
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
136 |
130 132 135
|
reexpclzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( - 1 ↑ 𝑘 ) ∈ ℝ ) |
137 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
138 |
136 137
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
139 |
6 138
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
140 |
1 2 139
|
serfre |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
141 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
142 |
|
ffvelrn |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
143 |
140 141 142
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
144 |
|
ffvelrn |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
145 |
140 45 144
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
146 |
143 145
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ∈ ℝ ) |
147 |
146
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ∈ ℂ ) |
148 |
147
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
149 |
148
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
150 |
126 123
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
151 |
150
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
152 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
153 |
152
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑥 ∈ ℝ ) |
154 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∧ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
155 |
149 151 153 154
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∧ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
156 |
128 155
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
157 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
158 |
157 141 142
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
159 |
156 158
|
jctild |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
160 |
159
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
161 |
160
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
162 |
26 161
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
163 |
162
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
164 |
163
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
165 |
16 164
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
166 |
1 8 165
|
caurcvg2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |