| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iseralt.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iseralt.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | iseralt.3 | ⊢ ( 𝜑  →  𝐺 : 𝑍 ⟶ ℝ ) | 
						
							| 4 |  | iseralt.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 5 |  | iseralt.5 | ⊢ ( 𝜑  →  𝐺  ⇝  0 ) | 
						
							| 6 |  | iseralt.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  ( ( - 1 ↑ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 7 |  | seqex | ⊢ seq 𝑀 (  +  ,  𝐹 )  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  V ) | 
						
							| 9 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 10 | 9 | brrelex1i | ⊢ ( 𝐺  ⇝  0  →  𝐺  ∈  V ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝜑  →  𝐺  ∈  V ) | 
						
							| 12 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 13 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 15 | 1 2 11 12 14 | clim0c | ⊢ ( 𝜑  →  ( 𝐺  ⇝  0  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥 ) ) | 
						
							| 16 | 5 15 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥 ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑍 ) | 
						
							| 18 | 17 1 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 19 |  | eluzelz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 20 |  | uzid | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 22 |  | peano2uz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 24 | 23 | breq1d | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥  ↔  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥 ) ) | 
						
							| 25 | 24 | rspcv | ⊢ ( ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥  →  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥 ) ) | 
						
							| 26 | 21 22 25 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥  →  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥 ) ) | 
						
							| 27 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝑛  ∈  ℤ ) | 
						
							| 28 | 27 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 29 | 28 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 30 | 19 1 | eleq2s | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 31 | 30 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 32 | 31 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  ℂ ) | 
						
							| 33 | 29 32 | subcld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑛  −  𝑗 )  ∈  ℂ ) | 
						
							| 34 |  | 2cnd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  2  ∈  ℂ ) | 
						
							| 35 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  2  ≠  0 ) | 
						
							| 37 | 33 34 36 | divcan2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) )  =  ( 𝑛  −  𝑗 ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) )  =  ( 𝑗  +  ( 𝑛  −  𝑗 ) ) ) | 
						
							| 39 | 32 29 | pncan3d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑗  +  ( 𝑛  −  𝑗 ) )  =  𝑛 ) | 
						
							| 40 | 38 39 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑛  =  ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  𝑛  =  ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) ) ) | 
						
							| 43 | 42 | fvoveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) ) ) | 
						
							| 44 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  𝜑 ) | 
						
							| 45 |  | simpl | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 46 | 45 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  𝑗  ∈  𝑍 ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ ) | 
						
							| 48 | 28 31 | zsubcld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑛  −  𝑗 )  ∈  ℤ ) | 
						
							| 49 | 48 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑛  −  𝑗 )  ∈  ℝ ) | 
						
							| 50 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 51 | 50 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  2  ∈  ℝ+ ) | 
						
							| 52 |  | eluzle | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝑗  ≤  𝑛 ) | 
						
							| 53 | 52 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ≤  𝑛 ) | 
						
							| 54 | 28 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 55 | 31 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 56 | 54 55 | subge0d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 0  ≤  ( 𝑛  −  𝑗 )  ↔  𝑗  ≤  𝑛 ) ) | 
						
							| 57 | 53 56 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  0  ≤  ( 𝑛  −  𝑗 ) ) | 
						
							| 58 | 49 51 57 | divge0d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  0  ≤  ( ( 𝑛  −  𝑗 )  /  2 ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  0  ≤  ( ( 𝑛  −  𝑗 )  /  2 ) ) | 
						
							| 60 |  | elnn0z | ⊢ ( ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℕ0  ↔  ( ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) | 
						
							| 61 | 47 59 60 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℕ0 ) | 
						
							| 62 | 1 2 3 4 5 6 | iseraltlem3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℕ0 )  →  ( ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) )  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) )  +  1 ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 63 | 62 | simpld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℕ0 )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 64 | 44 46 61 63 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  ( 2  ·  ( ( 𝑛  −  𝑗 )  /  2 ) ) ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 65 | 43 64 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 66 |  | 2div2e1 | ⊢ ( 2  /  2 )  =  1 | 
						
							| 67 | 66 | oveq2i | ⊢ ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  ( 2  /  2 ) )  =  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) | 
						
							| 68 |  | peano2cn | ⊢ ( ( 𝑛  −  𝑗 )  ∈  ℂ  →  ( ( 𝑛  −  𝑗 )  +  1 )  ∈  ℂ ) | 
						
							| 69 | 33 68 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  𝑗 )  +  1 )  ∈  ℂ ) | 
						
							| 70 | 69 34 34 36 | divsubdird | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  −  2 )  /  2 )  =  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  ( 2  /  2 ) ) ) | 
						
							| 71 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 72 | 71 | oveq2i | ⊢ ( ( ( 𝑛  −  𝑗 )  +  1 )  −  2 )  =  ( ( ( 𝑛  −  𝑗 )  +  1 )  −  ( 1  +  1 ) ) | 
						
							| 73 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 74 | 73 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  1  ∈  ℂ ) | 
						
							| 75 | 33 74 74 | pnpcan2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( 𝑛  −  𝑗 )  +  1 )  −  ( 1  +  1 ) )  =  ( ( 𝑛  −  𝑗 )  −  1 ) ) | 
						
							| 76 | 72 75 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( 𝑛  −  𝑗 )  +  1 )  −  2 )  =  ( ( 𝑛  −  𝑗 )  −  1 ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  −  2 )  /  2 )  =  ( ( ( 𝑛  −  𝑗 )  −  1 )  /  2 ) ) | 
						
							| 78 | 70 77 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  ( 2  /  2 ) )  =  ( ( ( 𝑛  −  𝑗 )  −  1 )  /  2 ) ) | 
						
							| 79 | 67 78 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 )  =  ( ( ( 𝑛  −  𝑗 )  −  1 )  /  2 ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) )  =  ( 2  ·  ( ( ( 𝑛  −  𝑗 )  −  1 )  /  2 ) ) ) | 
						
							| 81 |  | subcl | ⊢ ( ( ( 𝑛  −  𝑗 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  −  𝑗 )  −  1 )  ∈  ℂ ) | 
						
							| 82 | 33 73 81 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  𝑗 )  −  1 )  ∈  ℂ ) | 
						
							| 83 | 82 34 36 | divcan2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 2  ·  ( ( ( 𝑛  −  𝑗 )  −  1 )  /  2 ) )  =  ( ( 𝑛  −  𝑗 )  −  1 ) ) | 
						
							| 84 | 29 32 74 | sub32d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  𝑗 )  −  1 )  =  ( ( 𝑛  −  1 )  −  𝑗 ) ) | 
						
							| 85 | 80 83 84 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) )  =  ( ( 𝑛  −  1 )  −  𝑗 ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  =  ( 𝑗  +  ( ( 𝑛  −  1 )  −  𝑗 ) ) ) | 
						
							| 87 |  | subcl | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑛  −  1 )  ∈  ℂ ) | 
						
							| 88 | 29 73 87 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑛  −  1 )  ∈  ℂ ) | 
						
							| 89 | 32 88 | pncan3d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑗  +  ( ( 𝑛  −  1 )  −  𝑗 ) )  =  ( 𝑛  −  1 ) ) | 
						
							| 90 | 86 89 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  =  ( 𝑛  −  1 ) ) | 
						
							| 91 | 90 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 )  =  ( ( 𝑛  −  1 )  +  1 ) ) | 
						
							| 92 |  | npcan | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 93 | 29 73 92 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 94 | 91 93 | eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑛  =  ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 ) ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  𝑛  =  ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 ) ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 ) ) ) | 
						
							| 97 | 96 | fvoveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) ) ) | 
						
							| 98 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  𝜑 ) | 
						
							| 99 | 45 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  𝑗  ∈  𝑍 ) | 
						
							| 100 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ ) | 
						
							| 101 |  | uznn0sub | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( 𝑛  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 102 | 101 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑛  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 103 |  | nn0p1nn | ⊢ ( ( 𝑛  −  𝑗 )  ∈  ℕ0  →  ( ( 𝑛  −  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  𝑗 )  +  1 )  ∈  ℕ ) | 
						
							| 105 | 104 | nnrpd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑛  −  𝑗 )  +  1 )  ∈  ℝ+ ) | 
						
							| 106 | 105 | rphalfcld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℝ+ ) | 
						
							| 107 | 106 | rpgt0d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  0  <  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  0  <  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 ) ) | 
						
							| 109 |  | elnnz | ⊢ ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℕ  ↔  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ  ∧  0  <  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 ) ) ) | 
						
							| 110 | 100 108 109 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℕ ) | 
						
							| 111 |  | nnm1nn0 | ⊢ ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℕ  →  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 )  ∈  ℕ0 ) | 
						
							| 112 | 110 111 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 )  ∈  ℕ0 ) | 
						
							| 113 | 1 2 3 4 5 6 | iseraltlem3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 )  ∈  ℕ0 )  →  ( ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) )  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 114 | 113 | simprd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍  ∧  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 )  ∈  ℕ0 )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 115 | 98 99 112 114 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( ( 𝑗  +  ( 2  ·  ( ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  −  1 ) ) )  +  1 ) )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 116 | 97 115 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  ∧  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 117 |  | zeo | ⊢ ( ( 𝑛  −  𝑗 )  ∈  ℤ  →  ( ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ  ∨  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 118 | 48 117 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( 𝑛  −  𝑗 )  /  2 )  ∈  ℤ  ∨  ( ( ( 𝑛  −  𝑗 )  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 119 | 65 116 118 | mpjaodan | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 120 | 1 | peano2uzs | ⊢ ( 𝑗  ∈  𝑍  →  ( 𝑗  +  1 )  ∈  𝑍 ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑗  +  1 )  ∈  𝑍 ) | 
						
							| 122 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝑍 ⟶ ℝ  ∧  ( 𝑗  +  1 )  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 123 | 3 121 122 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝐺 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 124 | 1 2 3 4 5 | iseraltlem1 | ⊢ ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  𝑍 )  →  0  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 125 | 121 124 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  0  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 126 | 123 125 | absidd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 127 | 119 126 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 128 | 127 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 129 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 130 | 129 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  - 1  ∈  ℝ ) | 
						
							| 131 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 132 | 131 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  - 1  ≠  0 ) | 
						
							| 133 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 134 | 133 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  ℤ ) | 
						
							| 136 | 130 132 135 | reexpclzd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( - 1 ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 137 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 138 | 136 137 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( - 1 ↑ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 139 | 6 138 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 140 | 1 2 139 | serfre | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ ) | 
						
							| 141 | 1 | uztrn2 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 142 |  | ffvelcdm | ⊢ ( ( seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ  ∧  𝑛  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 143 | 140 141 142 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 144 |  | ffvelcdm | ⊢ ( ( seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ  ∧  𝑗  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 145 | 140 45 144 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 146 | 143 145 | resubcld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 147 | 146 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 148 | 147 | abscld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 149 | 148 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 150 | 126 123 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 151 | 150 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 152 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 153 | 152 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 154 |  | lelttr | ⊢ ( ( ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ∈  ℝ  ∧  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ∧  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥 )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 155 | 149 151 153 154 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  ≤  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  ∧  ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥 )  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 156 | 128 155 | mpand | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥  →  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 157 | 140 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ ) | 
						
							| 158 | 157 141 142 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 159 | 156 158 | jctild | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  ( 𝑗  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 160 | 159 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 161 | 160 | ralrimdva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  ( ( abs ‘ ( 𝐺 ‘ ( 𝑗  +  1 ) ) )  <  𝑥  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 162 | 26 161 | syld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 163 | 162 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 164 | 163 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) )  <  𝑥  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 165 | 16 164 | mpd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ  ∧  ( abs ‘ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑛 )  −  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 166 | 1 8 165 | caurcvg2 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) |