| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iseralt.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | iseralt.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | iseralt.3 | ⊢ ( 𝜑  →  𝐺 : 𝑍 ⟶ ℝ ) | 
						
							| 4 |  | iseralt.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 5 |  | iseralt.5 | ⊢ ( 𝜑  →  𝐺  ⇝  0 ) | 
						
							| 6 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 7 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 8 | 7 1 | eleq2s | ⊢ ( 𝑁  ∈  𝑍  →  𝑁  ∈  ℤ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  →  𝑁  ∈  ℤ ) | 
						
							| 10 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  →  𝐺  ⇝  0 ) | 
						
							| 11 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 13 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 14 |  | uzssz | ⊢ ( ℤ≥ ‘ 1 )  ⊆  ℤ | 
						
							| 15 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 16 | 14 15 | climconst2 | ⊢ ( ( ( 𝐺 ‘ 𝑁 )  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℤ  ×  { ( 𝐺 ‘ 𝑁 ) } )  ⇝  ( 𝐺 ‘ 𝑁 ) ) | 
						
							| 17 | 12 13 16 | sylancl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  →  ( ℤ  ×  { ( 𝐺 ‘ 𝑁 ) } )  ⇝  ( 𝐺 ‘ 𝑁 ) ) | 
						
							| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐺 : 𝑍 ⟶ ℝ ) | 
						
							| 19 | 1 | uztrn2 | ⊢ ( ( 𝑁  ∈  𝑍  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 20 | 19 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 21 | 18 20 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 22 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑛  ∈  ℤ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 24 |  | fvex | ⊢ ( 𝐺 ‘ 𝑁 )  ∈  V | 
						
							| 25 | 24 | fvconst2 | ⊢ ( 𝑛  ∈  ℤ  →  ( ( ℤ  ×  { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑁 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( ℤ  ×  { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑁 ) ) | 
						
							| 27 | 11 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐺 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 28 | 26 27 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( ℤ  ×  { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 30 | 18 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 𝑁 ... 𝑛 ) )  →  𝐺 : 𝑍 ⟶ ℝ ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  𝑍 ) | 
						
							| 32 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑁 ... 𝑛 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 33 | 1 | uztrn2 | ⊢ ( ( 𝑁  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 34 | 31 32 33 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 𝑁 ... 𝑛 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 35 | 30 34 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 𝑁 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 36 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝜑  ∧  𝑁  ∈  𝑍 ) ) | 
						
							| 37 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑁 ... ( 𝑛  −  1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 38 | 33 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 39 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 40 | 38 39 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 41 | 36 37 40 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 𝑁 ... ( 𝑛  −  1 ) ) )  →  ( 𝐺 ‘ ( 𝑘  +  1 ) )  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 42 | 29 35 41 | monoord2 | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐺 ‘ 𝑛 )  ≤  ( 𝐺 ‘ 𝑁 ) ) | 
						
							| 43 | 42 26 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐺 ‘ 𝑛 )  ≤  ( ( ℤ  ×  { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) ) | 
						
							| 44 | 6 9 10 17 21 28 43 | climle | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑍 )  →  0  ≤  ( 𝐺 ‘ 𝑁 ) ) |