Step |
Hyp |
Ref |
Expression |
1 |
|
isercoll.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isercoll.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isercoll.g |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) |
4 |
|
isercoll.i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
5 |
|
isercoll.0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
6 |
|
isercoll.f |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
7 |
|
isercoll.h |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
8 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
9 |
1 8
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
10 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ) |
11 |
9 10
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℤ ) |
12 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝑛 ∈ ℤ ) |
14 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝑀 ... 𝑚 ) ∈ Fin ) |
15 |
|
ffun |
⊢ ( 𝐺 : ℕ ⟶ 𝑍 → Fun 𝐺 ) |
16 |
|
funimacnv |
⊢ ( Fun 𝐺 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) ) |
17 |
3 15 16
|
3syl |
⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) ) |
18 |
|
inss1 |
⊢ ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑚 ) |
19 |
17 18
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ⊆ ( 𝑀 ... 𝑚 ) ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ⊆ ( 𝑀 ... 𝑚 ) ) |
21 |
14 20
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin ) |
22 |
|
hashcl |
⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℕ0 ) |
23 |
|
nn0z |
⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ ) |
24 |
21 22 23
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ ) |
25 |
|
ssid |
⊢ ℕ ⊆ ℕ |
26 |
1 2 3 4
|
isercolllem1 |
⊢ ( ( 𝜑 ∧ ℕ ⊆ ℕ ) → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
27 |
25 26
|
mpan2 |
⊢ ( 𝜑 → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
28 |
|
ffn |
⊢ ( 𝐺 : ℕ ⟶ 𝑍 → 𝐺 Fn ℕ ) |
29 |
|
fnresdm |
⊢ ( 𝐺 Fn ℕ → ( 𝐺 ↾ ℕ ) = 𝐺 ) |
30 |
|
isoeq1 |
⊢ ( ( 𝐺 ↾ ℕ ) = 𝐺 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) ) |
31 |
3 28 29 30
|
4syl |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) ) |
32 |
27 31
|
mpbid |
⊢ ( 𝜑 → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
33 |
|
isof1o |
⊢ ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) → 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) ) |
34 |
|
f1ocnv |
⊢ ( 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) → ◡ 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ ) |
35 |
|
f1ofun |
⊢ ( ◡ 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ → Fun ◡ 𝐺 ) |
36 |
32 33 34 35
|
4syl |
⊢ ( 𝜑 → Fun ◡ 𝐺 ) |
37 |
|
df-f1 |
⊢ ( 𝐺 : ℕ –1-1→ 𝑍 ↔ ( 𝐺 : ℕ ⟶ 𝑍 ∧ Fun ◡ 𝐺 ) ) |
38 |
3 36 37
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ℕ –1-1→ 𝑍 ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝐺 : ℕ –1-1→ 𝑍 ) |
40 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
41 |
|
ovex |
⊢ ( 1 ... 𝑛 ) ∈ V |
42 |
41
|
f1imaen |
⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍 ∧ ( 1 ... 𝑛 ) ⊆ ℕ ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) |
43 |
39 40 42
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) |
44 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) |
45 |
|
enfii |
⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ) |
46 |
44 43 45
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ) |
47 |
|
hashen |
⊢ ( ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) ) |
48 |
46 44 47
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) ) |
49 |
43 48
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
50 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
51 |
50
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝑛 ∈ ℕ0 ) |
52 |
|
hashfz1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
53 |
51 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
54 |
49 53
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = 𝑛 ) |
55 |
|
elfznn |
⊢ ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ∈ ℕ ) |
56 |
55
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ℕ ) |
57 |
|
zssre |
⊢ ℤ ⊆ ℝ |
58 |
9 57
|
sstri |
⊢ 𝑍 ⊆ ℝ |
59 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 ) |
60 |
|
ffvelrn |
⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 𝑦 ∈ ℕ ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑍 ) |
61 |
59 55 60
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑍 ) |
62 |
58 61
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
63 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ) |
64 |
58 63
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
65 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) → 𝑚 ∈ ℤ ) |
66 |
65
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℤ ) |
67 |
66
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℝ ) |
68 |
|
elfzle2 |
⊢ ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ≤ 𝑛 ) |
69 |
68
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ≤ 𝑛 ) |
70 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
71 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑛 ∈ ℕ ) |
72 |
|
isorel |
⊢ ( ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑛 < 𝑦 ↔ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
73 |
70 71 56 72
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑛 < 𝑦 ↔ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
74 |
73
|
notbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ¬ 𝑛 < 𝑦 ↔ ¬ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
75 |
56
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ℝ ) |
76 |
71
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑛 ∈ ℝ ) |
77 |
75 76
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦 ≤ 𝑛 ↔ ¬ 𝑛 < 𝑦 ) ) |
78 |
62 64
|
lenltd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑛 ) ↔ ¬ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
79 |
74 77 78
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦 ≤ 𝑛 ↔ ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
80 |
69 79
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
81 |
|
eluzle |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ 𝑚 ) |
82 |
81
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ 𝑚 ) |
83 |
62 64 67 80 82
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ 𝑚 ) |
84 |
61 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
85 |
|
elfz5 |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝐺 ‘ 𝑦 ) ≤ 𝑚 ) ) |
86 |
84 66 85
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝐺 ‘ 𝑦 ) ≤ 𝑚 ) ) |
87 |
83 86
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) |
88 |
59
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝐺 Fn ℕ ) |
89 |
88
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝐺 Fn ℕ ) |
90 |
|
elpreima |
⊢ ( 𝐺 Fn ℕ → ( 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) ) ) |
91 |
89 90
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) ) ) |
92 |
56 87 91
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) |
93 |
92
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) |
94 |
93
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 1 ... 𝑛 ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) |
95 |
|
imass2 |
⊢ ( ( 1 ... 𝑛 ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) |
96 |
94 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) |
97 |
|
ssdomg |
⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin → ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
98 |
21 96 97
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) |
99 |
|
hashdom |
⊢ ( ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ∧ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
100 |
46 21 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
101 |
98 100
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
102 |
54 101
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝑛 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
103 |
|
eluz2 |
⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ↔ ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ ∧ 𝑛 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ) |
104 |
13 24 102 103
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
105 |
|
fveq2 |
⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ) |
106 |
105
|
eleq1d |
⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ) ) |
107 |
105
|
fvoveq1d |
⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) ) |
108 |
107
|
breq1d |
⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) |
109 |
106 108
|
anbi12d |
⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
110 |
109
|
rspcv |
⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ≥ ‘ 𝑛 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
111 |
104 110
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
112 |
111
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
113 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐺 ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
114 |
113
|
raleqdv |
⊢ ( 𝑗 = ( 𝐺 ‘ 𝑛 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
115 |
114
|
rspcev |
⊢ ( ( ( 𝐺 ‘ 𝑛 ) ∈ ℤ ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) |
116 |
11 112 115
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
117 |
116
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
118 |
|
1nn |
⊢ 1 ∈ ℕ |
119 |
|
ffvelrn |
⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 1 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) |
120 |
3 118 119
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) |
121 |
120 1
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
122 |
|
eluzelz |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ 1 ) ∈ ℤ ) |
123 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) = ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) |
124 |
123
|
rexuz3 |
⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
125 |
121 122 124
|
3syl |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
126 |
117 125
|
sylibrd |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
127 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑀 ... 𝑗 ) ∈ Fin ) |
128 |
|
funimacnv |
⊢ ( Fun 𝐺 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) ) |
129 |
3 15 128
|
3syl |
⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) ) |
130 |
|
inss1 |
⊢ ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑗 ) |
131 |
129 130
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ⊆ ( 𝑀 ... 𝑗 ) ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ⊆ ( 𝑀 ... 𝑗 ) ) |
133 |
127 132
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin ) |
134 |
|
hashcl |
⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 ) |
135 |
|
nn0p1nn |
⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ) |
136 |
133 134 135
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ) |
137 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) |
138 |
137
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) |
139 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin ) |
140 |
|
nn0z |
⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ ) |
141 |
139 134 140
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ ) |
142 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) → 𝑘 ∈ ℤ ) |
143 |
142
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℤ ) |
144 |
|
zltp1le |
⊢ ( ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) ) |
145 |
141 143 144
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) ) |
146 |
138 145
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ) |
147 |
|
nn0re |
⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ ) |
148 |
133 134 147
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ ) |
149 |
148
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ ) |
150 |
|
eluznn |
⊢ ( ( ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
151 |
136 150
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
152 |
151
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℝ ) |
153 |
149 152
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ¬ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
154 |
146 153
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ¬ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
155 |
|
fzss2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 𝑀 ... 𝑗 ) ) |
156 |
|
imass2 |
⊢ ( ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 𝑀 ... 𝑗 ) → ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) |
157 |
|
imass2 |
⊢ ( ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) |
158 |
155 156 157
|
3syl |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) |
159 |
|
ssdomg |
⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin → ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
160 |
139 159
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
161 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 ) |
162 |
161
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑍 ) |
163 |
162 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
164 |
161 151
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑍 ) |
165 |
9 164
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
166 |
165
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
167 |
|
elfz5 |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℤ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
168 |
163 166 167
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
169 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
170 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
171 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
172 |
170 171
|
sstri |
⊢ ℕ ⊆ ℝ* |
173 |
172
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ℕ ⊆ ℝ* ) |
174 |
|
imassrn |
⊢ ( 𝐺 “ ℕ ) ⊆ ran 𝐺 |
175 |
161
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 : ℕ ⟶ 𝑍 ) |
176 |
175
|
frnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ran 𝐺 ⊆ 𝑍 ) |
177 |
176 58
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ran 𝐺 ⊆ ℝ ) |
178 |
174 177
|
sstrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ ) |
179 |
178 171
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ* ) |
180 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) |
181 |
151
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
182 |
|
leisorel |
⊢ ( ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ∧ ( ℕ ⊆ ℝ* ∧ ( 𝐺 “ ℕ ) ⊆ ℝ* ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑥 ≤ 𝑘 ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
183 |
169 173 179 180 181 182
|
syl122anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ 𝑘 ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
184 |
168 183
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ↔ 𝑥 ≤ 𝑘 ) ) |
185 |
184
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝑥 ∈ ℕ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥 ≤ 𝑘 ) ) ) |
186 |
|
elpreima |
⊢ ( 𝐺 Fn ℕ → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
187 |
161 28 186
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
188 |
|
fznn |
⊢ ( 𝑘 ∈ ℤ → ( 𝑥 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥 ≤ 𝑘 ) ) ) |
189 |
143 188
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥 ≤ 𝑘 ) ) ) |
190 |
185 187 189
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ 𝑥 ∈ ( 1 ... 𝑘 ) ) ) |
191 |
190
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) = ( 1 ... 𝑘 ) ) |
192 |
191
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) = ( 𝐺 “ ( 1 ... 𝑘 ) ) ) |
193 |
192
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
194 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝐺 : ℕ –1-1→ 𝑍 ) |
195 |
|
fz1ssnn |
⊢ ( 1 ... 𝑘 ) ⊆ ℕ |
196 |
|
ovex |
⊢ ( 1 ... 𝑘 ) ∈ V |
197 |
196
|
f1imaen |
⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍 ∧ ( 1 ... 𝑘 ) ⊆ ℕ ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) |
198 |
194 195 197
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) |
199 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 1 ... 𝑘 ) ∈ Fin ) |
200 |
|
enfii |
⊢ ( ( ( 1 ... 𝑘 ) ∈ Fin ∧ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ) |
201 |
199 198 200
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ) |
202 |
|
hashen |
⊢ ( ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ∧ ( 1 ... 𝑘 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) ) |
203 |
201 199 202
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) ) |
204 |
198 203
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ) |
205 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
206 |
|
hashfz1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑘 ) ) = 𝑘 ) |
207 |
151 205 206
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 1 ... 𝑘 ) ) = 𝑘 ) |
208 |
204 207
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = 𝑘 ) |
209 |
208
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
210 |
|
hashdom |
⊢ ( ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ∧ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
211 |
201 139 210
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
212 |
209 211
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
213 |
160 193 212
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
214 |
158 213
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
215 |
154 214
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ¬ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
216 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) → 𝑗 ∈ ℤ ) |
217 |
216
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑗 ∈ ℤ ) |
218 |
|
uztric |
⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) ∨ ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
219 |
165 217 218
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) ∨ ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
220 |
219
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ¬ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
221 |
215 220
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
222 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( 𝑀 ... 𝑚 ) = ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) |
223 |
222
|
imaeq2d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) = ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) |
224 |
223
|
imaeq2d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
225 |
224
|
fveq2d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) |
226 |
225
|
fveq2d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ) |
227 |
226
|
eleq1d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ) ) |
228 |
226
|
fvoveq1d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) ) |
229 |
228
|
breq1d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) |
230 |
227 229
|
anbi12d |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
231 |
230
|
rspcv |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
232 |
221 231
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
233 |
192
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) = ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ) |
234 |
233 208
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) = 𝑘 ) |
235 |
234
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
236 |
235
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ) ) |
237 |
235
|
fvoveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) ) |
238 |
237
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
239 |
236 238
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
240 |
232 239
|
sylibd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
241 |
240
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
242 |
|
fveq2 |
⊢ ( 𝑛 = ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) |
243 |
242
|
raleqdv |
⊢ ( 𝑛 = ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
244 |
243
|
rspcev |
⊢ ( ( ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
245 |
136 241 244
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
246 |
245
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
247 |
126 246
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
248 |
247
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
249 |
248
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
250 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
251 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
252 |
|
seqex |
⊢ seq 1 ( + , 𝐻 ) ∈ V |
253 |
252
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐻 ) ∈ V ) |
254 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
255 |
250 251 253 254
|
clim2 |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
256 |
121 122
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℤ ) |
257 |
|
seqex |
⊢ seq 𝑀 ( + , 𝐹 ) ∈ V |
258 |
257
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ V ) |
259 |
1 2 3 4 5 6 7
|
isercolllem3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ) |
260 |
123 256 258 259
|
clim2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
261 |
249 255 260
|
3bitr4d |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) ) |