Metamath Proof Explorer


Theorem isercoll

Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses isercoll.z 𝑍 = ( ℤ𝑀 )
isercoll.m ( 𝜑𝑀 ∈ ℤ )
isercoll.g ( 𝜑𝐺 : ℕ ⟶ 𝑍 )
isercoll.i ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) )
isercoll.0 ( ( 𝜑𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹𝑛 ) = 0 )
isercoll.f ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ℂ )
isercoll.h ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐻𝑘 ) = ( 𝐹 ‘ ( 𝐺𝑘 ) ) )
Assertion isercoll ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 isercoll.z 𝑍 = ( ℤ𝑀 )
2 isercoll.m ( 𝜑𝑀 ∈ ℤ )
3 isercoll.g ( 𝜑𝐺 : ℕ ⟶ 𝑍 )
4 isercoll.i ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) )
5 isercoll.0 ( ( 𝜑𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹𝑛 ) = 0 )
6 isercoll.f ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ℂ )
7 isercoll.h ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐻𝑘 ) = ( 𝐹 ‘ ( 𝐺𝑘 ) ) )
8 uzssz ( ℤ𝑀 ) ⊆ ℤ
9 1 8 eqsstri 𝑍 ⊆ ℤ
10 3 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) ∈ 𝑍 )
11 9 10 sselid ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) ∈ ℤ )
12 nnz ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ )
13 12 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → 𝑛 ∈ ℤ )
14 fzfid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝑀 ... 𝑚 ) ∈ Fin )
15 ffun ( 𝐺 : ℕ ⟶ 𝑍 → Fun 𝐺 )
16 funimacnv ( Fun 𝐺 → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) )
17 3 15 16 3syl ( 𝜑 → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) )
18 inss1 ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑚 )
19 17 18 eqsstrdi ( 𝜑 → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ⊆ ( 𝑀 ... 𝑚 ) )
20 19 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ⊆ ( 𝑀 ... 𝑚 ) )
21 14 20 ssfid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin )
22 hashcl ( ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℕ0 )
23 nn0z ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ )
24 21 22 23 3syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ )
25 ssid ℕ ⊆ ℕ
26 1 2 3 4 isercolllem1 ( ( 𝜑 ∧ ℕ ⊆ ℕ ) → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) )
27 25 26 mpan2 ( 𝜑 → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) )
28 ffn ( 𝐺 : ℕ ⟶ 𝑍𝐺 Fn ℕ )
29 fnresdm ( 𝐺 Fn ℕ → ( 𝐺 ↾ ℕ ) = 𝐺 )
30 isoeq1 ( ( 𝐺 ↾ ℕ ) = 𝐺 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) )
31 3 28 29 30 4syl ( 𝜑 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) )
32 27 31 mpbid ( 𝜑𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) )
33 isof1o ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) → 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) )
34 f1ocnv ( 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) → 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ )
35 f1ofun ( 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ → Fun 𝐺 )
36 32 33 34 35 4syl ( 𝜑 → Fun 𝐺 )
37 df-f1 ( 𝐺 : ℕ –1-1𝑍 ↔ ( 𝐺 : ℕ ⟶ 𝑍 ∧ Fun 𝐺 ) )
38 3 36 37 sylanbrc ( 𝜑𝐺 : ℕ –1-1𝑍 )
39 38 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → 𝐺 : ℕ –1-1𝑍 )
40 fz1ssnn ( 1 ... 𝑛 ) ⊆ ℕ
41 ovex ( 1 ... 𝑛 ) ∈ V
42 41 f1imaen ( ( 𝐺 : ℕ –1-1𝑍 ∧ ( 1 ... 𝑛 ) ⊆ ℕ ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) )
43 39 40 42 sylancl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) )
44 fzfid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin )
45 enfii ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin )
46 44 43 45 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin )
47 hashen ( ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) )
48 46 44 47 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) )
49 43 48 mpbird ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) )
50 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
51 50 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → 𝑛 ∈ ℕ0 )
52 hashfz1 ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 )
53 51 52 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 )
54 49 53 eqtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = 𝑛 )
55 elfznn ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ∈ ℕ )
56 55 adantl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ℕ )
57 zssre ℤ ⊆ ℝ
58 9 57 sstri 𝑍 ⊆ ℝ
59 3 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 )
60 ffvelrn ( ( 𝐺 : ℕ ⟶ 𝑍𝑦 ∈ ℕ ) → ( 𝐺𝑦 ) ∈ 𝑍 )
61 59 55 60 syl2an ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑦 ) ∈ 𝑍 )
62 58 61 sselid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑦 ) ∈ ℝ )
63 10 ad2antrr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑛 ) ∈ 𝑍 )
64 58 63 sselid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑛 ) ∈ ℝ )
65 eluzelz ( 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) → 𝑚 ∈ ℤ )
66 65 ad2antlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℤ )
67 66 zred ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℝ )
68 elfzle2 ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦𝑛 )
69 68 adantl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦𝑛 )
70 32 ad3antrrr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) )
71 simpllr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑛 ∈ ℕ )
72 isorel ( ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑛 < 𝑦 ↔ ( 𝐺𝑛 ) < ( 𝐺𝑦 ) ) )
73 70 71 56 72 syl12anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑛 < 𝑦 ↔ ( 𝐺𝑛 ) < ( 𝐺𝑦 ) ) )
74 73 notbid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ¬ 𝑛 < 𝑦 ↔ ¬ ( 𝐺𝑛 ) < ( 𝐺𝑦 ) ) )
75 56 nnred ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ℝ )
76 71 nnred ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑛 ∈ ℝ )
77 75 76 lenltd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦𝑛 ↔ ¬ 𝑛 < 𝑦 ) )
78 62 64 lenltd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐺𝑦 ) ≤ ( 𝐺𝑛 ) ↔ ¬ ( 𝐺𝑛 ) < ( 𝐺𝑦 ) ) )
79 74 77 78 3bitr4d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦𝑛 ↔ ( 𝐺𝑦 ) ≤ ( 𝐺𝑛 ) ) )
80 69 79 mpbid ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑦 ) ≤ ( 𝐺𝑛 ) )
81 eluzle ( 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) → ( 𝐺𝑛 ) ≤ 𝑚 )
82 81 ad2antlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑛 ) ≤ 𝑚 )
83 62 64 67 80 82 letrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑦 ) ≤ 𝑚 )
84 61 1 eleqtrdi ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑦 ) ∈ ( ℤ𝑀 ) )
85 elfz5 ( ( ( 𝐺𝑦 ) ∈ ( ℤ𝑀 ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝐺𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝐺𝑦 ) ≤ 𝑚 ) )
86 84 66 85 syl2anc ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐺𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝐺𝑦 ) ≤ 𝑚 ) )
87 83 86 mpbird ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺𝑦 ) ∈ ( 𝑀 ... 𝑚 ) )
88 59 ffnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → 𝐺 Fn ℕ )
89 88 adantr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝐺 Fn ℕ )
90 elpreima ( 𝐺 Fn ℕ → ( 𝑦 ∈ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝐺𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) ) )
91 89 90 syl ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦 ∈ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝐺𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) ) )
92 56 87 91 mpbir2and ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) )
93 92 ex ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ∈ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) )
94 93 ssrdv ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 1 ... 𝑛 ) ⊆ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) )
95 imass2 ( ( 1 ... 𝑛 ) ⊆ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) )
96 94 95 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) )
97 ssdomg ( ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin → ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) )
98 21 96 97 sylc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) )
99 hashdom ( ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ∧ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) )
100 46 21 99 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) )
101 98 100 mpbird ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) )
102 54 101 eqbrtrrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → 𝑛 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) )
103 eluz2 ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ𝑛 ) ↔ ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ ∧ 𝑛 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) )
104 13 24 102 103 syl3anbrc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ𝑛 ) )
105 fveq2 ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) )
106 105 eleq1d ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ) )
107 105 fvoveq1d ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) )
108 107 breq1d ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) )
109 106 108 anbi12d ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
110 109 rspcv ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ𝑛 ) → ( ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
111 104 110 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ) → ( ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
112 111 ralrimdva ( ( 𝜑𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
113 fveq2 ( 𝑗 = ( 𝐺𝑛 ) → ( ℤ𝑗 ) = ( ℤ ‘ ( 𝐺𝑛 ) ) )
114 113 raleqdv ( 𝑗 = ( 𝐺𝑛 ) → ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
115 114 rspcev ( ( ( 𝐺𝑛 ) ∈ ℤ ∧ ∀ 𝑚 ∈ ( ℤ ‘ ( 𝐺𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) )
116 11 112 115 syl6an ( ( 𝜑𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
117 116 rexlimdva ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
118 1nn 1 ∈ ℕ
119 ffvelrn ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 1 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ∈ 𝑍 )
120 3 118 119 sylancl ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝑍 )
121 120 1 eleqtrdi ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ𝑀 ) )
122 eluzelz ( ( 𝐺 ‘ 1 ) ∈ ( ℤ𝑀 ) → ( 𝐺 ‘ 1 ) ∈ ℤ )
123 eqid ( ℤ ‘ ( 𝐺 ‘ 1 ) ) = ( ℤ ‘ ( 𝐺 ‘ 1 ) )
124 123 rexuz3 ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( ∃ 𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
125 121 122 124 3syl ( 𝜑 → ( ∃ 𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
126 117 125 sylibrd ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
127 fzfid ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑀 ... 𝑗 ) ∈ Fin )
128 funimacnv ( Fun 𝐺 → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) )
129 3 15 128 3syl ( 𝜑 → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) )
130 inss1 ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑗 )
131 129 130 eqsstrdi ( 𝜑 → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ⊆ ( 𝑀 ... 𝑗 ) )
132 131 adantr ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ⊆ ( 𝑀 ... 𝑗 ) )
133 127 132 ssfid ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin )
134 hashcl ( ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 )
135 nn0p1nn ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ )
136 133 134 135 3syl ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ )
137 eluzle ( 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 )
138 137 adantl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 )
139 133 adantr ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin )
140 nn0z ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ )
141 139 134 140 3syl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ )
142 eluzelz ( 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) → 𝑘 ∈ ℤ )
143 142 adantl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℤ )
144 zltp1le ( ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) )
145 141 143 144 syl2anc ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) )
146 138 145 mpbird ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 )
147 nn0re ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ )
148 133 134 147 3syl ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ )
149 148 adantr ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ )
150 eluznn ( ( ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℕ )
151 136 150 sylan ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℕ )
152 151 nnred ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℝ )
153 149 152 ltnled ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ¬ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) )
154 146 153 mpbid ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ¬ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) )
155 fzss2 ( 𝑗 ∈ ( ℤ ‘ ( 𝐺𝑘 ) ) → ( 𝑀 ... ( 𝐺𝑘 ) ) ⊆ ( 𝑀 ... 𝑗 ) )
156 imass2 ( ( 𝑀 ... ( 𝐺𝑘 ) ) ⊆ ( 𝑀 ... 𝑗 ) → ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ⊆ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) )
157 imass2 ( ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ⊆ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) )
158 155 156 157 3syl ( 𝑗 ∈ ( ℤ ‘ ( 𝐺𝑘 ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) )
159 ssdomg ( ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin → ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) )
160 139 159 syl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) )
161 3 ad2antrr ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 )
162 161 ffvelrnda ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺𝑥 ) ∈ 𝑍 )
163 162 1 eleqtrdi ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺𝑥 ) ∈ ( ℤ𝑀 ) )
164 161 151 ffvelrnd ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺𝑘 ) ∈ 𝑍 )
165 9 164 sselid ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺𝑘 ) ∈ ℤ )
166 165 adantr ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺𝑘 ) ∈ ℤ )
167 elfz5 ( ( ( 𝐺𝑥 ) ∈ ( ℤ𝑀 ) ∧ ( 𝐺𝑘 ) ∈ ℤ ) → ( ( 𝐺𝑥 ) ∈ ( 𝑀 ... ( 𝐺𝑘 ) ) ↔ ( 𝐺𝑥 ) ≤ ( 𝐺𝑘 ) ) )
168 163 166 167 syl2anc ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺𝑥 ) ∈ ( 𝑀 ... ( 𝐺𝑘 ) ) ↔ ( 𝐺𝑥 ) ≤ ( 𝐺𝑘 ) ) )
169 32 ad3antrrr ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) )
170 nnssre ℕ ⊆ ℝ
171 ressxr ℝ ⊆ ℝ*
172 170 171 sstri ℕ ⊆ ℝ*
173 172 a1i ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ℕ ⊆ ℝ* )
174 imassrn ( 𝐺 “ ℕ ) ⊆ ran 𝐺
175 161 adantr ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 : ℕ ⟶ 𝑍 )
176 175 frnd ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ran 𝐺𝑍 )
177 176 58 sstrdi ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ran 𝐺 ⊆ ℝ )
178 174 177 sstrid ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ )
179 178 171 sstrdi ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ* )
180 simpr ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ )
181 151 adantr ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑘 ∈ ℕ )
182 leisorel ( ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ∧ ( ℕ ⊆ ℝ* ∧ ( 𝐺 “ ℕ ) ⊆ ℝ* ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑥𝑘 ↔ ( 𝐺𝑥 ) ≤ ( 𝐺𝑘 ) ) )
183 169 173 179 180 181 182 syl122anc ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥𝑘 ↔ ( 𝐺𝑥 ) ≤ ( 𝐺𝑘 ) ) )
184 168 183 bitr4d ( ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺𝑥 ) ∈ ( 𝑀 ... ( 𝐺𝑘 ) ) ↔ 𝑥𝑘 ) )
185 184 pm5.32da ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝑥 ∈ ℕ ∧ ( 𝐺𝑥 ) ∈ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥𝑘 ) ) )
186 elpreima ( 𝐺 Fn ℕ → ( 𝑥 ∈ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝐺𝑥 ) ∈ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) )
187 161 28 186 3syl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝐺𝑥 ) ∈ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) )
188 fznn ( 𝑘 ∈ ℤ → ( 𝑥 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥𝑘 ) ) )
189 143 188 syl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥𝑘 ) ) )
190 185 187 189 3bitr4d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ↔ 𝑥 ∈ ( 1 ... 𝑘 ) ) )
191 190 eqrdv ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) = ( 1 ... 𝑘 ) )
192 191 imaeq2d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) = ( 𝐺 “ ( 1 ... 𝑘 ) ) )
193 192 sseq1d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) )
194 38 ad2antrr ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝐺 : ℕ –1-1𝑍 )
195 fz1ssnn ( 1 ... 𝑘 ) ⊆ ℕ
196 ovex ( 1 ... 𝑘 ) ∈ V
197 196 f1imaen ( ( 𝐺 : ℕ –1-1𝑍 ∧ ( 1 ... 𝑘 ) ⊆ ℕ ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) )
198 194 195 197 sylancl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) )
199 fzfid ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 1 ... 𝑘 ) ∈ Fin )
200 enfii ( ( ( 1 ... 𝑘 ) ∈ Fin ∧ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin )
201 199 198 200 syl2anc ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin )
202 hashen ( ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ∧ ( 1 ... 𝑘 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) )
203 201 199 202 syl2anc ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) )
204 198 203 mpbird ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) )
205 nnnn0 ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 )
206 hashfz1 ( 𝑘 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑘 ) ) = 𝑘 )
207 151 205 206 3syl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 1 ... 𝑘 ) ) = 𝑘 )
208 204 207 eqtrd ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = 𝑘 )
209 208 breq1d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) )
210 hashdom ( ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ∧ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) )
211 201 139 210 syl2anc ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) )
212 209 211 bitr3d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) )
213 160 193 212 3imtr4d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) )
214 158 213 syl5 ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑗 ∈ ( ℤ ‘ ( 𝐺𝑘 ) ) → 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) )
215 154 214 mtod ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ¬ 𝑗 ∈ ( ℤ ‘ ( 𝐺𝑘 ) ) )
216 eluzelz ( 𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) → 𝑗 ∈ ℤ )
217 216 ad2antlr ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑗 ∈ ℤ )
218 uztric ( ( ( 𝐺𝑘 ) ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ ‘ ( 𝐺𝑘 ) ) ∨ ( 𝐺𝑘 ) ∈ ( ℤ𝑗 ) ) )
219 165 217 218 syl2anc ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑗 ∈ ( ℤ ‘ ( 𝐺𝑘 ) ) ∨ ( 𝐺𝑘 ) ∈ ( ℤ𝑗 ) ) )
220 219 ord ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ¬ 𝑗 ∈ ( ℤ ‘ ( 𝐺𝑘 ) ) → ( 𝐺𝑘 ) ∈ ( ℤ𝑗 ) ) )
221 215 220 mpd ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺𝑘 ) ∈ ( ℤ𝑗 ) )
222 oveq2 ( 𝑚 = ( 𝐺𝑘 ) → ( 𝑀 ... 𝑚 ) = ( 𝑀 ... ( 𝐺𝑘 ) ) )
223 222 imaeq2d ( 𝑚 = ( 𝐺𝑘 ) → ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) = ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) )
224 223 imaeq2d ( 𝑚 = ( 𝐺𝑘 ) → ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) )
225 224 fveq2d ( 𝑚 = ( 𝐺𝑘 ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) = ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) )
226 225 fveq2d ( 𝑚 = ( 𝐺𝑘 ) → ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) )
227 226 eleq1d ( 𝑚 = ( 𝐺𝑘 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) ∈ ℂ ) )
228 226 fvoveq1d ( 𝑚 = ( 𝐺𝑘 ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) )
229 228 breq1d ( 𝑚 = ( 𝐺𝑘 ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) )
230 227 229 anbi12d ( 𝑚 = ( 𝐺𝑘 ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
231 230 rspcv ( ( 𝐺𝑘 ) ∈ ( ℤ𝑗 ) → ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
232 221 231 syl ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
233 192 fveq2d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) = ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) )
234 233 208 eqtrd ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) = 𝑘 )
235 234 fveq2d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) )
236 235 eleq1d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ) )
237 235 fvoveq1d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) )
238 237 breq1d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) )
239 236 238 anbi12d ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... ( 𝐺𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
240 232 239 sylibd ( ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
241 240 ralrimdva ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
242 fveq2 ( 𝑛 = ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) → ( ℤ𝑛 ) = ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) )
243 242 raleqdv ( 𝑛 = ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) → ( ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
244 243 rspcev ( ( ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ ‘ ( ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) )
245 136 241 244 syl6an ( ( 𝜑𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
246 245 rexlimdva ( 𝜑 → ( ∃ 𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) )
247 126 246 impbid ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
248 247 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) )
249 248 anbi2d ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) )
250 nnuz ℕ = ( ℤ ‘ 1 )
251 1zzd ( 𝜑 → 1 ∈ ℤ )
252 seqex seq 1 ( + , 𝐻 ) ∈ V
253 252 a1i ( 𝜑 → seq 1 ( + , 𝐻 ) ∈ V )
254 eqidd ( ( 𝜑𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) )
255 250 251 253 254 clim2 ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) )
256 121 122 syl ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℤ )
257 seqex seq 𝑀 ( + , 𝐹 ) ∈ V
258 257 a1i ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ V )
259 1 2 3 4 5 6 7 isercolllem3 ( ( 𝜑𝑚 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) )
260 123 256 258 259 clim2 ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+𝑗 ∈ ( ℤ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) )
261 249 255 260 3bitr4d ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) )