| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isercoll.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isercoll.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | isercoll.g | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ 𝑍 ) | 
						
							| 4 |  | isercoll.i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  <  ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 5 |  | isercoll.0 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑍  ∖  ran  𝐺 ) )  →  ( 𝐹 ‘ 𝑛 )  =  0 ) | 
						
							| 6 |  | isercoll.f | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 7 |  | isercoll.h | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 8 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 9 | 1 8 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 10 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  ∈  𝑍 ) | 
						
							| 11 | 9 10 | sselid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 12 |  | nnz | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ ) | 
						
							| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 14 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝑀 ... 𝑚 )  ∈  Fin ) | 
						
							| 15 |  | ffun | ⊢ ( 𝐺 : ℕ ⟶ 𝑍  →  Fun  𝐺 ) | 
						
							| 16 |  | funimacnv | ⊢ ( Fun  𝐺  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  =  ( ( 𝑀 ... 𝑚 )  ∩  ran  𝐺 ) ) | 
						
							| 17 | 3 15 16 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  =  ( ( 𝑀 ... 𝑚 )  ∩  ran  𝐺 ) ) | 
						
							| 18 |  | inss1 | ⊢ ( ( 𝑀 ... 𝑚 )  ∩  ran  𝐺 )  ⊆  ( 𝑀 ... 𝑚 ) | 
						
							| 19 | 17 18 | eqsstrdi | ⊢ ( 𝜑  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  ⊆  ( 𝑀 ... 𝑚 ) ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  ⊆  ( 𝑀 ... 𝑚 ) ) | 
						
							| 21 | 14 20 | ssfid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  ∈  Fin ) | 
						
							| 22 |  | hashcl | ⊢ ( ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  ∈  Fin  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ℕ0 ) | 
						
							| 23 |  | nn0z | ⊢ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ℕ0  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ℤ ) | 
						
							| 24 | 21 22 23 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ℤ ) | 
						
							| 25 |  | ssid | ⊢ ℕ  ⊆  ℕ | 
						
							| 26 | 1 2 3 4 | isercolllem1 | ⊢ ( ( 𝜑  ∧  ℕ  ⊆  ℕ )  →  ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 27 | 25 26 | mpan2 | ⊢ ( 𝜑  →  ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 28 |  | ffn | ⊢ ( 𝐺 : ℕ ⟶ 𝑍  →  𝐺  Fn  ℕ ) | 
						
							| 29 |  | fnresdm | ⊢ ( 𝐺  Fn  ℕ  →  ( 𝐺  ↾  ℕ )  =  𝐺 ) | 
						
							| 30 |  | isoeq1 | ⊢ ( ( 𝐺  ↾  ℕ )  =  𝐺  →  ( ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  ↔  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) ) | 
						
							| 31 | 3 28 29 30 | 4syl | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  ↔  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) ) | 
						
							| 32 | 27 31 | mpbid | ⊢ ( 𝜑  →  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 33 |  | isof1o | ⊢ ( 𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  →  𝐺 : ℕ –1-1-onto→ ( 𝐺  “  ℕ ) ) | 
						
							| 34 |  | f1ocnv | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( 𝐺  “  ℕ )  →  ◡ 𝐺 : ( 𝐺  “  ℕ ) –1-1-onto→ ℕ ) | 
						
							| 35 |  | f1ofun | ⊢ ( ◡ 𝐺 : ( 𝐺  “  ℕ ) –1-1-onto→ ℕ  →  Fun  ◡ 𝐺 ) | 
						
							| 36 | 32 33 34 35 | 4syl | ⊢ ( 𝜑  →  Fun  ◡ 𝐺 ) | 
						
							| 37 |  | df-f1 | ⊢ ( 𝐺 : ℕ –1-1→ 𝑍  ↔  ( 𝐺 : ℕ ⟶ 𝑍  ∧  Fun  ◡ 𝐺 ) ) | 
						
							| 38 | 3 36 37 | sylanbrc | ⊢ ( 𝜑  →  𝐺 : ℕ –1-1→ 𝑍 ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  𝐺 : ℕ –1-1→ 𝑍 ) | 
						
							| 40 |  | fz1ssnn | ⊢ ( 1 ... 𝑛 )  ⊆  ℕ | 
						
							| 41 |  | ovex | ⊢ ( 1 ... 𝑛 )  ∈  V | 
						
							| 42 | 41 | f1imaen | ⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍  ∧  ( 1 ... 𝑛 )  ⊆  ℕ )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≈  ( 1 ... 𝑛 ) ) | 
						
							| 43 | 39 40 42 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≈  ( 1 ... 𝑛 ) ) | 
						
							| 44 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 45 |  | enfii | ⊢ ( ( ( 1 ... 𝑛 )  ∈  Fin  ∧  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≈  ( 1 ... 𝑛 ) )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ∈  Fin ) | 
						
							| 46 | 44 43 45 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ∈  Fin ) | 
						
							| 47 |  | hashen | ⊢ ( ( ( 𝐺  “  ( 1 ... 𝑛 ) )  ∈  Fin  ∧  ( 1 ... 𝑛 )  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑛 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑛 ) )  ↔  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≈  ( 1 ... 𝑛 ) ) ) | 
						
							| 48 | 46 44 47 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑛 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑛 ) )  ↔  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≈  ( 1 ... 𝑛 ) ) ) | 
						
							| 49 | 43 48 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑛 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑛 ) ) ) | 
						
							| 50 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 52 |  | hashfz1 | ⊢ ( 𝑛  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑛 ) )  =  𝑛 ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ♯ ‘ ( 1 ... 𝑛 ) )  =  𝑛 ) | 
						
							| 54 | 49 53 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑛 ) ) )  =  𝑛 ) | 
						
							| 55 |  | elfznn | ⊢ ( 𝑦  ∈  ( 1 ... 𝑛 )  →  𝑦  ∈  ℕ ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 57 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 58 | 9 57 | sstri | ⊢ 𝑍  ⊆  ℝ | 
						
							| 59 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  𝐺 : ℕ ⟶ 𝑍 ) | 
						
							| 60 |  | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍  ∧  𝑦  ∈  ℕ )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝑍 ) | 
						
							| 61 | 59 55 60 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝑍 ) | 
						
							| 62 | 58 61 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 63 | 10 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑛 )  ∈  𝑍 ) | 
						
							| 64 | 58 63 | sselid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 65 |  | eluzelz | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 66 | 65 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 67 | 66 | zred | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 68 |  | elfzle2 | ⊢ ( 𝑦  ∈  ( 1 ... 𝑛 )  →  𝑦  ≤  𝑛 ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑦  ≤  𝑛 ) | 
						
							| 70 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 71 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 72 |  | isorel | ⊢ ( ( 𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑛  <  𝑦  ↔  ( 𝐺 ‘ 𝑛 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 73 | 70 71 56 72 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑛  <  𝑦  ↔  ( 𝐺 ‘ 𝑛 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 74 | 73 | notbid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( ¬  𝑛  <  𝑦  ↔  ¬  ( 𝐺 ‘ 𝑛 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 75 | 56 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 76 | 71 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 77 | 75 76 | lenltd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑦  ≤  𝑛  ↔  ¬  𝑛  <  𝑦 ) ) | 
						
							| 78 | 62 64 | lenltd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐺 ‘ 𝑦 )  ≤  ( 𝐺 ‘ 𝑛 )  ↔  ¬  ( 𝐺 ‘ 𝑛 )  <  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 79 | 74 77 78 | 3bitr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑦  ≤  𝑛  ↔  ( 𝐺 ‘ 𝑦 )  ≤  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 80 | 69 79 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑦 )  ≤  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 81 |  | eluzle | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) )  →  ( 𝐺 ‘ 𝑛 )  ≤  𝑚 ) | 
						
							| 82 | 81 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑛 )  ≤  𝑚 ) | 
						
							| 83 | 62 64 67 80 82 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑦 )  ≤  𝑚 ) | 
						
							| 84 | 61 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 85 |  | elfz5 | ⊢ ( ( ( 𝐺 ‘ 𝑦 )  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑚  ∈  ℤ )  →  ( ( 𝐺 ‘ 𝑦 )  ∈  ( 𝑀 ... 𝑚 )  ↔  ( 𝐺 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 86 | 84 66 85 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( ( 𝐺 ‘ 𝑦 )  ∈  ( 𝑀 ... 𝑚 )  ↔  ( 𝐺 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 87 | 83 86 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝑀 ... 𝑚 ) ) | 
						
							| 88 | 59 | ffnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  𝐺  Fn  ℕ ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝐺  Fn  ℕ ) | 
						
							| 90 |  | elpreima | ⊢ ( 𝐺  Fn  ℕ  →  ( 𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) )  ↔  ( 𝑦  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝑀 ... 𝑚 ) ) ) ) | 
						
							| 91 | 89 90 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) )  ↔  ( 𝑦  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑦 )  ∈  ( 𝑀 ... 𝑚 ) ) ) ) | 
						
							| 92 | 56 87 91 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  ( 1 ... 𝑛 ) )  →  𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) | 
						
							| 93 | 92 | ex | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝑦  ∈  ( 1 ... 𝑛 )  →  𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) | 
						
							| 94 | 93 | ssrdv | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 1 ... 𝑛 )  ⊆  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) | 
						
							| 95 |  | imass2 | ⊢ ( ( 1 ... 𝑛 )  ⊆  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) | 
						
							| 97 |  | ssdomg | ⊢ ( ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  ∈  Fin  →  ( ( 𝐺  “  ( 1 ... 𝑛 ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) | 
						
							| 98 | 21 96 97 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) | 
						
							| 99 |  | hashdom | ⊢ ( ( ( 𝐺  “  ( 1 ... 𝑛 ) )  ∈  Fin  ∧  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑛 ) ) )  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ↔  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) | 
						
							| 100 | 46 21 99 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑛 ) ) )  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ↔  ( 𝐺  “  ( 1 ... 𝑛 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) | 
						
							| 101 | 98 100 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑛 ) ) )  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) | 
						
							| 102 | 54 101 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  𝑛  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) | 
						
							| 103 |  | eluz2 | ⊢ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ( ℤ≥ ‘ 𝑛 )  ↔  ( 𝑛  ∈  ℤ  ∧  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ℤ  ∧  𝑛  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) ) | 
						
							| 104 | 13 24 102 103 | syl3anbrc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 105 |  | fveq2 | ⊢ ( 𝑘  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  =  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) ) | 
						
							| 106 | 105 | eleq1d | ⊢ ( 𝑘  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ↔  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ ) ) | 
						
							| 107 | 105 | fvoveq1d | ⊢ ( 𝑘  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  →  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  =  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) ) ) | 
						
							| 108 | 107 | breq1d | ⊢ ( 𝑘  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  →  ( ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 109 | 106 108 | anbi12d | ⊢ ( 𝑘  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  →  ( ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 110 | 109 | rspcv | ⊢ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 111 | 104 110 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 112 | 111 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 113 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝐺 ‘ 𝑛 )  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 114 | 113 | raleqdv | ⊢ ( 𝑗  =  ( 𝐺 ‘ 𝑛 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 115 | 114 | rspcev | ⊢ ( ( ( 𝐺 ‘ 𝑛 )  ∈  ℤ  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 116 | 11 112 115 | syl6an | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 117 | 116 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  →  ∃ 𝑗  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 118 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 119 |  | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍  ∧  1  ∈  ℕ )  →  ( 𝐺 ‘ 1 )  ∈  𝑍 ) | 
						
							| 120 | 3 118 119 | sylancl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  ∈  𝑍 ) | 
						
							| 121 | 120 1 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 122 |  | eluzelz | ⊢ ( ( 𝐺 ‘ 1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐺 ‘ 1 )  ∈  ℤ ) | 
						
							| 123 |  | eqid | ⊢ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) )  =  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) | 
						
							| 124 | 123 | rexuz3 | ⊢ ( ( 𝐺 ‘ 1 )  ∈  ℤ  →  ( ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 125 | 121 122 124 | 3syl | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 126 | 117 125 | sylibrd | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  →  ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 127 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝑀 ... 𝑗 )  ∈  Fin ) | 
						
							| 128 |  | funimacnv | ⊢ ( Fun  𝐺  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  =  ( ( 𝑀 ... 𝑗 )  ∩  ran  𝐺 ) ) | 
						
							| 129 | 3 15 128 | 3syl | ⊢ ( 𝜑  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  =  ( ( 𝑀 ... 𝑗 )  ∩  ran  𝐺 ) ) | 
						
							| 130 |  | inss1 | ⊢ ( ( 𝑀 ... 𝑗 )  ∩  ran  𝐺 )  ⊆  ( 𝑀 ... 𝑗 ) | 
						
							| 131 | 129 130 | eqsstrdi | ⊢ ( 𝜑  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ⊆  ( 𝑀 ... 𝑗 ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ⊆  ( 𝑀 ... 𝑗 ) ) | 
						
							| 133 | 127 132 | ssfid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ∈  Fin ) | 
						
							| 134 |  | hashcl | ⊢ ( ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ∈  Fin  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℕ0 ) | 
						
							| 135 |  | nn0p1nn | ⊢ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℕ0  →  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ∈  ℕ ) | 
						
							| 136 | 133 134 135 | 3syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ∈  ℕ ) | 
						
							| 137 |  | eluzle | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ≤  𝑘 ) | 
						
							| 138 | 137 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ≤  𝑘 ) | 
						
							| 139 | 133 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ∈  Fin ) | 
						
							| 140 |  | nn0z | ⊢ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℕ0  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℤ ) | 
						
							| 141 | 139 134 140 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℤ ) | 
						
							| 142 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  𝑘  ∈  ℤ ) | 
						
							| 144 |  | zltp1le | ⊢ ( ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  <  𝑘  ↔  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ≤  𝑘 ) ) | 
						
							| 145 | 141 143 144 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  <  𝑘  ↔  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ≤  𝑘 ) ) | 
						
							| 146 | 138 145 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  <  𝑘 ) | 
						
							| 147 |  | nn0re | ⊢ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℕ0  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 148 | 133 134 147 | 3syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 149 | 148 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ∈  ℝ ) | 
						
							| 150 |  | eluznn | ⊢ ( ( ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ∈  ℕ  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 151 | 136 150 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 152 | 151 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 153 | 149 152 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  <  𝑘  ↔  ¬  𝑘  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) ) | 
						
							| 154 | 146 153 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ¬  𝑘  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) | 
						
							| 155 |  | fzss2 | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) )  →  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) )  ⊆  ( 𝑀 ... 𝑗 ) ) | 
						
							| 156 |  | imass2 | ⊢ ( ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) )  ⊆  ( 𝑀 ... 𝑗 )  →  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) )  ⊆  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) | 
						
							| 157 |  | imass2 | ⊢ ( ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) )  ⊆  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) | 
						
							| 158 | 155 156 157 | 3syl | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) | 
						
							| 159 |  | ssdomg | ⊢ ( ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ∈  Fin  →  ( ( 𝐺  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) | 
						
							| 160 | 139 159 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( 𝐺  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) | 
						
							| 161 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  𝐺 : ℕ ⟶ 𝑍 ) | 
						
							| 162 | 161 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑍 ) | 
						
							| 163 | 162 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 164 | 161 151 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  𝑍 ) | 
						
							| 165 | 9 164 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 166 | 165 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 167 |  | elfz5 | ⊢ ( ( ( 𝐺 ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝐺 ‘ 𝑘 )  ∈  ℤ )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 168 | 163 166 167 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) )  ↔  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 169 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 170 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 171 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 172 | 170 171 | sstri | ⊢ ℕ  ⊆  ℝ* | 
						
							| 173 | 172 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ℕ  ⊆  ℝ* ) | 
						
							| 174 |  | imassrn | ⊢ ( 𝐺  “  ℕ )  ⊆  ran  𝐺 | 
						
							| 175 | 161 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝐺 : ℕ ⟶ 𝑍 ) | 
						
							| 176 | 175 | frnd | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ran  𝐺  ⊆  𝑍 ) | 
						
							| 177 | 176 58 | sstrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ran  𝐺  ⊆  ℝ ) | 
						
							| 178 | 174 177 | sstrid | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺  “  ℕ )  ⊆  ℝ ) | 
						
							| 179 | 178 171 | sstrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺  “  ℕ )  ⊆  ℝ* ) | 
						
							| 180 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝑥  ∈  ℕ ) | 
						
							| 181 | 151 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 182 |  | leisorel | ⊢ ( ( 𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  ∧  ( ℕ  ⊆  ℝ*  ∧  ( 𝐺  “  ℕ )  ⊆  ℝ* )  ∧  ( 𝑥  ∈  ℕ  ∧  𝑘  ∈  ℕ ) )  →  ( 𝑥  ≤  𝑘  ↔  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 183 | 169 173 179 180 181 182 | syl122anc | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ≤  𝑘  ↔  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 184 | 168 183 | bitr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) )  ↔  𝑥  ≤  𝑘 ) ) | 
						
							| 185 | 184 | pm5.32da | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( 𝑥  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) )  ↔  ( 𝑥  ∈  ℕ  ∧  𝑥  ≤  𝑘 ) ) ) | 
						
							| 186 |  | elpreima | ⊢ ( 𝐺  Fn  ℕ  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) )  ↔  ( 𝑥  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) | 
						
							| 187 | 161 28 186 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) )  ↔  ( 𝑥  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) | 
						
							| 188 |  | fznn | ⊢ ( 𝑘  ∈  ℤ  →  ( 𝑥  ∈  ( 1 ... 𝑘 )  ↔  ( 𝑥  ∈  ℕ  ∧  𝑥  ≤  𝑘 ) ) ) | 
						
							| 189 | 143 188 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝑥  ∈  ( 1 ... 𝑘 )  ↔  ( 𝑥  ∈  ℕ  ∧  𝑥  ≤  𝑘 ) ) ) | 
						
							| 190 | 185 187 189 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) )  ↔  𝑥  ∈  ( 1 ... 𝑘 ) ) ) | 
						
							| 191 | 190 | eqrdv | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) )  =  ( 1 ... 𝑘 ) ) | 
						
							| 192 | 191 | imaeq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) )  =  ( 𝐺  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 193 | 192 | sseq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ↔  ( 𝐺  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) | 
						
							| 194 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  𝐺 : ℕ –1-1→ 𝑍 ) | 
						
							| 195 |  | fz1ssnn | ⊢ ( 1 ... 𝑘 )  ⊆  ℕ | 
						
							| 196 |  | ovex | ⊢ ( 1 ... 𝑘 )  ∈  V | 
						
							| 197 | 196 | f1imaen | ⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍  ∧  ( 1 ... 𝑘 )  ⊆  ℕ )  →  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≈  ( 1 ... 𝑘 ) ) | 
						
							| 198 | 194 195 197 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≈  ( 1 ... 𝑘 ) ) | 
						
							| 199 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 1 ... 𝑘 )  ∈  Fin ) | 
						
							| 200 |  | enfii | ⊢ ( ( ( 1 ... 𝑘 )  ∈  Fin  ∧  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≈  ( 1 ... 𝑘 ) )  →  ( 𝐺  “  ( 1 ... 𝑘 ) )  ∈  Fin ) | 
						
							| 201 | 199 198 200 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝐺  “  ( 1 ... 𝑘 ) )  ∈  Fin ) | 
						
							| 202 |  | hashen | ⊢ ( ( ( 𝐺  “  ( 1 ... 𝑘 ) )  ∈  Fin  ∧  ( 1 ... 𝑘 )  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑘 ) )  ↔  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≈  ( 1 ... 𝑘 ) ) ) | 
						
							| 203 | 201 199 202 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑘 ) )  ↔  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≈  ( 1 ... 𝑘 ) ) ) | 
						
							| 204 | 198 203 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑘 ) ) ) | 
						
							| 205 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 206 |  | hashfz1 | ⊢ ( 𝑘  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑘 ) )  =  𝑘 ) | 
						
							| 207 | 151 205 206 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 1 ... 𝑘 ) )  =  𝑘 ) | 
						
							| 208 | 204 207 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) )  =  𝑘 ) | 
						
							| 209 | 208 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) )  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ↔  𝑘  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) ) | 
						
							| 210 |  | hashdom | ⊢ ( ( ( 𝐺  “  ( 1 ... 𝑘 ) )  ∈  Fin  ∧  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) )  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ↔  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) | 
						
							| 211 | 201 139 210 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) )  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ↔  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) | 
						
							| 212 | 209 211 | bitr3d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝑘  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  ↔  ( 𝐺  “  ( 1 ... 𝑘 ) )  ≼  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) | 
						
							| 213 | 160 193 212 | 3imtr4d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) )  ⊆  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) )  →  𝑘  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) ) | 
						
							| 214 | 158 213 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) )  →  𝑘  ≤  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) ) ) ) | 
						
							| 215 | 154 214 | mtod | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ¬  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 216 |  | eluzelz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 217 | 216 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 218 |  | uztric | ⊢ ( ( ( 𝐺 ‘ 𝑘 )  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) )  ∨  ( 𝐺 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 219 | 165 217 218 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) )  ∨  ( 𝐺 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 220 | 219 | ord | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ¬  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 221 | 215 220 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 222 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝑀 ... 𝑚 )  =  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 223 | 222 | imaeq2d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) )  =  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 224 | 223 | imaeq2d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) )  =  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) | 
						
							| 225 | 224 | fveq2d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) )  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 226 | 225 | fveq2d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  =  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 227 | 226 | eleq1d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ↔  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  ∈  ℂ ) ) | 
						
							| 228 | 226 | fvoveq1d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  =  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) ) ) | 
						
							| 229 | 228 | breq1d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 230 | 227 229 | anbi12d | ⊢ ( 𝑚  =  ( 𝐺 ‘ 𝑘 )  →  ( ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 231 | 230 | rspcv | ⊢ ( ( 𝐺 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 232 | 221 231 | syl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 233 | 192 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) )  =  ( ♯ ‘ ( 𝐺  “  ( 1 ... 𝑘 ) ) ) ) | 
						
							| 234 | 233 208 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) )  =  𝑘 ) | 
						
							| 235 | 234 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  =  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 ) ) | 
						
							| 236 | 235 | eleq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  ∈  ℂ  ↔  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 237 | 235 | fvoveq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) )  =  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 238 | 237 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) )  <  𝑥  ↔  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 239 | 236 238 | anbi12d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  ↔  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 240 | 232 239 | sylibd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 241 | 240 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 242 |  | fveq2 | ⊢ ( 𝑛  =  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  →  ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) ) | 
						
							| 243 | 242 | raleqdv | ⊢ ( 𝑛  =  ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 244 | 243 | rspcev | ⊢ ( ( ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 )  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑗 ) ) ) )  +  1 ) ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) | 
						
							| 245 | 136 241 244 | syl6an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 246 | 245 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 247 | 126 246 | impbid | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 248 | 247 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) | 
						
							| 249 | 248 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) )  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 250 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 251 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 252 |  | seqex | ⊢ seq 1 (  +  ,  𝐻 )  ∈  V | 
						
							| 253 | 252 | a1i | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐻 )  ∈  V ) | 
						
							| 254 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  =  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 ) ) | 
						
							| 255 | 250 251 253 254 | clim2 | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝐻 )  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 256 | 121 122 | syl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  ∈  ℤ ) | 
						
							| 257 |  | seqex | ⊢ seq 𝑀 (  +  ,  𝐹 )  ∈  V | 
						
							| 258 | 257 | a1i | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  V ) | 
						
							| 259 | 1 2 3 4 5 6 7 | isercolllem3 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑚 )  =  ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) ) ) | 
						
							| 260 | 123 256 258 259 | clim2 | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐴  ↔  ( 𝐴  ∈  ℂ  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  ∈  ℂ  ∧  ( abs ‘ ( ( seq 1 (  +  ,  𝐻 ) ‘ ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑚 ) ) ) ) )  −  𝐴 ) )  <  𝑥 ) ) ) ) | 
						
							| 261 | 249 255 260 | 3bitr4d | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝐻 )  ⇝  𝐴  ↔  seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐴 ) ) |