Step |
Hyp |
Ref |
Expression |
1 |
|
isercoll2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isercoll2.w |
⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) |
3 |
|
isercoll2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
isercoll2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
isercoll2.g |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑊 ) |
6 |
|
isercoll2.i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
7 |
|
isercoll2.0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑊 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
8 |
|
isercoll2.f |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
9 |
|
isercoll2.h |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
10 |
|
1z |
⊢ 1 ∈ ℤ |
11 |
|
zsubcl |
⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 1 − 𝑀 ) ∈ ℤ ) |
12 |
10 3 11
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝑀 ) ∈ ℤ ) |
13 |
|
seqex |
⊢ seq 𝑀 ( + , 𝐻 ) ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐻 ) ∈ V ) |
15 |
|
seqex |
⊢ seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ∈ V ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
18 |
17 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
19 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 1 − 𝑀 ) ∈ ℤ ) |
20 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝜑 ) |
21 |
|
elfzuz |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑘 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
22 |
21 1
|
eleqtrrdi |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑘 ) → 𝑗 ∈ 𝑍 ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
24 |
23 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
25 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℤ ) |
27 |
26
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℂ ) |
28 |
3
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑀 ∈ ℂ ) |
30 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 1 ∈ ℂ ) |
31 |
27 29 30
|
subadd23d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 − 𝑀 ) + 1 ) = ( 𝑗 + ( 1 − 𝑀 ) ) ) |
32 |
|
uznn0sub |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑗 − 𝑀 ) ∈ ℕ0 ) |
33 |
24 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 − 𝑀 ) ∈ ℕ0 ) |
34 |
|
nn0p1nn |
⊢ ( ( 𝑗 − 𝑀 ) ∈ ℕ0 → ( ( 𝑗 − 𝑀 ) + 1 ) ∈ ℕ ) |
35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 − 𝑀 ) + 1 ) ∈ ℕ ) |
36 |
31 35
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + ( 1 − 𝑀 ) ) ∈ ℕ ) |
37 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑗 + ( 1 − 𝑀 ) ) → ( 𝑥 − 1 ) = ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝑥 = ( 𝑗 + ( 1 − 𝑀 ) ) → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) |
39 |
38
|
fveq2d |
⊢ ( 𝑥 = ( 𝑗 + ( 1 − 𝑀 ) ) → ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ) |
40 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) = ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
41 |
|
fvex |
⊢ ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ∈ V |
42 |
39 40 41
|
fvmpt |
⊢ ( ( 𝑗 + ( 1 − 𝑀 ) ) ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ) |
43 |
36 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ) |
44 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑗 − 𝑀 ) + 1 ) − 1 ) = ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) |
45 |
33
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 − 𝑀 ) ∈ ℂ ) |
46 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
47 |
|
pncan |
⊢ ( ( ( 𝑗 − 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑗 − 𝑀 ) + 1 ) − 1 ) = ( 𝑗 − 𝑀 ) ) |
48 |
45 46 47
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑗 − 𝑀 ) + 1 ) − 1 ) = ( 𝑗 − 𝑀 ) ) |
49 |
44 48
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) = ( 𝑗 − 𝑀 ) ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) = ( 𝑀 + ( 𝑗 − 𝑀 ) ) ) |
51 |
29 27
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 + ( 𝑗 − 𝑀 ) ) = 𝑗 ) |
52 |
50 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) = 𝑗 ) |
53 |
52
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) = ( 𝐻 ‘ 𝑗 ) ) |
54 |
43 53
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) ) |
55 |
20 22 54
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) ) |
56 |
18 19 55
|
seqshft2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq ( 𝑀 + ( 1 − 𝑀 ) ) ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) ) |
57 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑀 ∈ ℂ ) |
58 |
|
pncan3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 + ( 1 − 𝑀 ) ) = 1 ) |
59 |
57 46 58
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 + ( 1 − 𝑀 ) ) = 1 ) |
60 |
59
|
seqeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → seq ( 𝑀 + ( 1 − 𝑀 ) ) ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) = seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) |
61 |
60
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq ( 𝑀 + ( 1 − 𝑀 ) ) ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) = ( seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) ) |
62 |
56 61
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑘 ) ) |
63 |
1 3 12 14 16 62
|
climshft2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ⇝ 𝐴 ) ) |
64 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝐺 : 𝑍 ⟶ 𝑊 ) |
65 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
66 |
3 65
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
67 |
|
nnm1nn0 |
⊢ ( 𝑥 ∈ ℕ → ( 𝑥 − 1 ) ∈ ℕ0 ) |
68 |
|
uzaddcl |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑥 − 1 ) ∈ ℕ0 ) → ( 𝑀 + ( 𝑥 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
69 |
66 67 68
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝑀 + ( 𝑥 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
70 |
69 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝑀 + ( 𝑥 − 1 ) ) ∈ 𝑍 ) |
71 |
64 70
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ∈ 𝑊 ) |
72 |
71
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) : ℕ ⟶ 𝑊 ) |
73 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
74 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) |
75 |
73 74
|
breq12d |
⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) < ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) ) |
76 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
78 |
|
nnm1nn0 |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 − 1 ) ∈ ℕ0 ) |
79 |
|
uzaddcl |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑗 − 1 ) ∈ ℕ0 ) → ( 𝑀 + ( 𝑗 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
80 |
66 78 79
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( 𝑗 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
81 |
80 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( 𝑗 − 1 ) ) ∈ 𝑍 ) |
82 |
75 77 81
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) < ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) |
83 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
85 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) |
86 |
84 85 85
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑗 + 1 ) − 1 ) = ( ( 𝑗 − 1 ) + 1 ) ) |
87 |
86
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) = ( 𝑀 + ( ( 𝑗 − 1 ) + 1 ) ) ) |
88 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
89 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
90 |
89
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 − 1 ) ∈ ℂ ) |
91 |
88 90 85
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) = ( 𝑀 + ( ( 𝑗 − 1 ) + 1 ) ) ) |
92 |
87 91
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) = ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) |
93 |
92
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) = ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) |
94 |
82 93
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) < ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
95 |
|
oveq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 − 1 ) = ( 𝑗 − 1 ) ) |
96 |
95
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( 𝑗 − 1 ) ) ) |
97 |
96
|
fveq2d |
⊢ ( 𝑥 = 𝑗 → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
98 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) = ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
99 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ∈ V |
100 |
97 98 99
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
102 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
103 |
102
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
104 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑗 + 1 ) − 1 ) ) |
105 |
104
|
oveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) |
106 |
105
|
fveq2d |
⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
107 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ∈ V |
108 |
106 98 107
|
fvmpt |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
109 |
103 108
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
110 |
94 101 109
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) < ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
111 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑍 ) |
112 |
|
uznn0sub |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 − 𝑀 ) ∈ ℕ0 ) |
113 |
18 112
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 − 𝑀 ) ∈ ℕ0 ) |
114 |
|
nn0p1nn |
⊢ ( ( 𝑘 − 𝑀 ) ∈ ℕ0 → ( ( 𝑘 − 𝑀 ) + 1 ) ∈ ℕ ) |
115 |
113 114
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 − 𝑀 ) + 1 ) ∈ ℕ ) |
116 |
113
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 − 𝑀 ) ∈ ℂ ) |
117 |
|
pncan |
⊢ ( ( ( 𝑘 − 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) = ( 𝑘 − 𝑀 ) ) |
118 |
116 46 117
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) = ( 𝑘 − 𝑀 ) ) |
119 |
118
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) = ( 𝑀 + ( 𝑘 − 𝑀 ) ) ) |
120 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
121 |
120 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
122 |
121
|
zcnd |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ ) |
123 |
|
pncan3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 + ( 𝑘 − 𝑀 ) ) = 𝑘 ) |
124 |
28 122 123
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 + ( 𝑘 − 𝑀 ) ) = 𝑘 ) |
125 |
119 124
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 = ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) |
126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) ) |
127 |
|
oveq1 |
⊢ ( 𝑥 = ( ( 𝑘 − 𝑀 ) + 1 ) → ( 𝑥 − 1 ) = ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) |
128 |
127
|
oveq2d |
⊢ ( 𝑥 = ( ( 𝑘 − 𝑀 ) + 1 ) → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) |
129 |
128
|
fveq2d |
⊢ ( 𝑥 = ( ( 𝑘 − 𝑀 ) + 1 ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) ) |
130 |
129
|
rspceeqv |
⊢ ( ( ( ( 𝑘 − 𝑀 ) + 1 ) ∈ ℕ ∧ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) ) → ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
131 |
115 126 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
132 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑘 ) ∈ V |
133 |
98
|
elrnmpt |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ V → ( ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ↔ ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
134 |
132 133
|
ax-mp |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ↔ ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
135 |
131 134
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
136 |
135
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
137 |
|
ffnfv |
⊢ ( 𝐺 : 𝑍 ⟶ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ↔ ( 𝐺 Fn 𝑍 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) |
138 |
111 136 137
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
139 |
138
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
140 |
139
|
sscond |
⊢ ( 𝜑 → ( 𝑊 ∖ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ⊆ ( 𝑊 ∖ ran 𝐺 ) ) |
141 |
140
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑊 ∖ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) → 𝑛 ∈ ( 𝑊 ∖ ran 𝐺 ) ) |
142 |
141 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑊 ∖ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
143 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
144 |
73
|
fveq2d |
⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) |
145 |
143 144
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) ) |
146 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
147 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ 𝑍 ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
148 |
145 147 81
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) |
149 |
96
|
fveq2d |
⊢ ( 𝑥 = 𝑗 → ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
150 |
|
fvex |
⊢ ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ∈ V |
151 |
149 40 150
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
152 |
151
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
153 |
101
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) |
154 |
148 152 153
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) ) ) |
155 |
2 4 72 110 142 8 154
|
isercoll |
⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ⇝ 𝐴 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐴 ) ) |
156 |
63 155
|
bitrd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐴 ) ) |