| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isercoll.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isercoll.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | isercoll.g | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ 𝑍 ) | 
						
							| 4 |  | isercoll.i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  <  ( 𝐺 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 5 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  →  𝑥  ∈  ℕ ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝑥  ∈  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  →  𝑥  ∈  ℕ ) ) | 
						
							| 7 |  | cnvimass | ⊢ ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  dom  𝐺 | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  𝐺 : ℕ ⟶ 𝑍 ) | 
						
							| 9 | 7 8 | fssdm | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℕ ) | 
						
							| 10 | 9 | sseld | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  →  𝑥  ∈  ℕ ) ) | 
						
							| 11 |  | id | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℕ ) | 
						
							| 12 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 13 | 11 12 | eleqtrdi | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 14 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →   <   Or  ℝ ) | 
						
							| 16 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝑀 ... 𝑁 )  ∈  Fin ) | 
						
							| 17 |  | ffun | ⊢ ( 𝐺 : ℕ ⟶ 𝑍  →  Fun  𝐺 ) | 
						
							| 18 |  | funimacnv | ⊢ ( Fun  𝐺  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  =  ( ( 𝑀 ... 𝑁 )  ∩  ran  𝐺 ) ) | 
						
							| 19 | 8 17 18 | 3syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  =  ( ( 𝑀 ... 𝑁 )  ∩  ran  𝐺 ) ) | 
						
							| 20 |  | inss1 | ⊢ ( ( 𝑀 ... 𝑁 )  ∩  ran  𝐺 )  ⊆  ( 𝑀 ... 𝑁 ) | 
						
							| 21 | 19 20 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 22 | 16 21 | ssfid | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  ∈  Fin ) | 
						
							| 23 |  | ssid | ⊢ ℕ  ⊆  ℕ | 
						
							| 24 | 1 2 3 4 | isercolllem1 | ⊢ ( ( 𝜑  ∧  ℕ  ⊆  ℕ )  →  ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 25 | 23 24 | mpan2 | ⊢ ( 𝜑  →  ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 26 |  | ffn | ⊢ ( 𝐺 : ℕ ⟶ 𝑍  →  𝐺  Fn  ℕ ) | 
						
							| 27 |  | fnresdm | ⊢ ( 𝐺  Fn  ℕ  →  ( 𝐺  ↾  ℕ )  =  𝐺 ) | 
						
							| 28 |  | isoeq1 | ⊢ ( ( 𝐺  ↾  ℕ )  =  𝐺  →  ( ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  ↔  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) ) | 
						
							| 29 | 3 26 27 28 | 4syl | ⊢ ( 𝜑  →  ( ( 𝐺  ↾  ℕ )  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  ↔  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) ) | 
						
							| 30 | 25 29 | mpbid | ⊢ ( 𝜑  →  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 31 |  | isof1o | ⊢ ( 𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  →  𝐺 : ℕ –1-1-onto→ ( 𝐺  “  ℕ ) ) | 
						
							| 32 |  | f1ocnv | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( 𝐺  “  ℕ )  →  ◡ 𝐺 : ( 𝐺  “  ℕ ) –1-1-onto→ ℕ ) | 
						
							| 33 |  | f1ofun | ⊢ ( ◡ 𝐺 : ( 𝐺  “  ℕ ) –1-1-onto→ ℕ  →  Fun  ◡ 𝐺 ) | 
						
							| 34 | 30 31 32 33 | 4syl | ⊢ ( 𝜑  →  Fun  ◡ 𝐺 ) | 
						
							| 35 |  | df-f1 | ⊢ ( 𝐺 : ℕ –1-1→ 𝑍  ↔  ( 𝐺 : ℕ ⟶ 𝑍  ∧  Fun  ◡ 𝐺 ) ) | 
						
							| 36 | 3 34 35 | sylanbrc | ⊢ ( 𝜑  →  𝐺 : ℕ –1-1→ 𝑍 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  𝐺 : ℕ –1-1→ 𝑍 ) | 
						
							| 38 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 39 |  | ssexg | ⊢ ( ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℕ  ∧  ℕ  ∈  V )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  V ) | 
						
							| 40 | 9 38 39 | sylancl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  V ) | 
						
							| 41 |  | f1imaeng | ⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℕ  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  V )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  ≈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 42 | 37 9 40 41 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  ≈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 43 | 42 | ensymd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≈  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 44 |  | enfii | ⊢ ( ( ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  ∈  Fin  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≈  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 45 | 22 43 44 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 46 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 47 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  1  ∈  ℕ ) | 
						
							| 48 |  | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍  ∧  1  ∈  ℕ )  →  ( 𝐺 ‘ 1 )  ∈  𝑍 ) | 
						
							| 49 | 3 46 48 | sylancl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  ∈  𝑍 ) | 
						
							| 50 | 49 1 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐺 ‘ 1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺 ‘ 1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) | 
						
							| 53 |  | elfzuzb | ⊢ ( ( 𝐺 ‘ 1 )  ∈  ( 𝑀 ... 𝑁 )  ↔  ( ( 𝐺 ‘ 1 )  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ) | 
						
							| 54 | 51 52 53 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺 ‘ 1 )  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 55 | 8 | ffnd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  𝐺  Fn  ℕ ) | 
						
							| 56 |  | elpreima | ⊢ ( 𝐺  Fn  ℕ  →  ( 1  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ↔  ( 1  ∈  ℕ  ∧  ( 𝐺 ‘ 1 )  ∈  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 1  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ↔  ( 1  ∈  ℕ  ∧  ( 𝐺 ‘ 1 )  ∈  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 58 | 47 54 57 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  1  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 59 | 58 | ne0d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≠  ∅ ) | 
						
							| 60 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 61 | 9 60 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℝ ) | 
						
							| 62 |  | fisupcl | ⊢ ( (  <   Or  ℝ  ∧  ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  Fin  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≠  ∅  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℝ ) )  →  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 63 | 15 45 59 61 62 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 64 | 9 63 | sseldd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ ) | 
						
							| 65 | 64 | nnzd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℤ ) | 
						
							| 66 |  | elfz5 | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 1 )  ∧  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℤ )  →  ( 𝑥  ∈  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ↔  𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 67 | 13 65 66 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ∈  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ↔  𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 68 |  | elpreima | ⊢ ( 𝐺  Fn  ℕ  →  ( sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ↔  ( sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ  ∧  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 69 | 55 68 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ↔  ( sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ  ∧  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 70 | 63 69 | mpbid | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ  ∧  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 71 |  | elfzle2 | ⊢ ( ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ≤  𝑁 ) | 
						
							| 72 | 70 71 | simpl2im | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ≤  𝑁 ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ≤  𝑁 ) | 
						
							| 74 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 75 | 1 74 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 76 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 77 | 75 76 | sstri | ⊢ 𝑍  ⊆  ℝ | 
						
							| 78 | 8 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑍 ) | 
						
							| 79 | 77 78 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 80 | 8 64 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  𝑍 ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  𝑍 ) | 
						
							| 82 | 77 81 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  ℝ ) | 
						
							| 83 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 84 | 83 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 85 | 76 84 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 86 |  | letr | ⊢ ( ( ( 𝐺 ‘ 𝑥 )  ∈  ℝ  ∧  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∧  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ≤  𝑁 )  →  ( 𝐺 ‘ 𝑥 )  ≤  𝑁 ) ) | 
						
							| 87 | 79 82 85 86 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( ( ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ∧  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ≤  𝑁 )  →  ( 𝐺 ‘ 𝑥 )  ≤  𝑁 ) ) | 
						
							| 88 | 73 87 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  →  ( 𝐺 ‘ 𝑥 )  ≤  𝑁 ) ) | 
						
							| 89 | 30 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) ) ) | 
						
							| 90 | 60 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ℕ  ⊆  ℝ ) | 
						
							| 91 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 92 | 90 91 | sstrdi | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ℕ  ⊆  ℝ* ) | 
						
							| 93 |  | imassrn | ⊢ ( 𝐺  “  ℕ )  ⊆  ran  𝐺 | 
						
							| 94 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝐺 : ℕ ⟶ 𝑍 ) | 
						
							| 95 | 94 | frnd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ran  𝐺  ⊆  𝑍 ) | 
						
							| 96 | 93 95 | sstrid | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺  “  ℕ )  ⊆  𝑍 ) | 
						
							| 97 | 96 77 | sstrdi | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺  “  ℕ )  ⊆  ℝ ) | 
						
							| 98 | 97 91 | sstrdi | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺  “  ℕ )  ⊆  ℝ* ) | 
						
							| 99 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  𝑥  ∈  ℕ ) | 
						
							| 100 | 64 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ ) | 
						
							| 101 |  | leisorel | ⊢ ( ( 𝐺  Isom   <  ,   <  ( ℕ ,  ( 𝐺  “  ℕ ) )  ∧  ( ℕ  ⊆  ℝ*  ∧  ( 𝐺  “  ℕ )  ⊆  ℝ* )  ∧  ( 𝑥  ∈  ℕ  ∧  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ ) )  →  ( 𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ↔  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 102 | 89 92 98 99 100 101 | syl122anc | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ↔  ( 𝐺 ‘ 𝑥 )  ≤  ( 𝐺 ‘ sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 103 | 78 1 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 104 |  | elfz5 | ⊢ ( ( ( 𝐺 ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ℤ )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐺 ‘ 𝑥 )  ≤  𝑁 ) ) | 
						
							| 105 | 103 84 104 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐺 ‘ 𝑥 )  ≤  𝑁 ) ) | 
						
							| 106 | 88 102 105 | 3imtr4d | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  →  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 107 |  | elpreima | ⊢ ( 𝐺  Fn  ℕ  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑥  ∈  ℕ  ∧  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 108 | 107 | baibd | ⊢ ( ( 𝐺  Fn  ℕ  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 109 | 55 108 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝐺 ‘ 𝑥 )  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 110 | 106 109 | sylibrd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  →  𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 111 |  | fimaxre2 | ⊢ ( ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℝ  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  Fin )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) 𝑦  ≤  𝑥 ) | 
						
							| 112 | 61 45 111 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) 𝑦  ≤  𝑥 ) | 
						
							| 113 |  | suprub | ⊢ ( ( ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℝ  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) 𝑦  ≤  𝑥 )  ∧  𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  →  𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) | 
						
							| 114 | 113 | ex | ⊢ ( ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ⊆  ℝ  ∧  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) 𝑦  ≤  𝑥 )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  →  𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 115 | 61 59 112 114 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  →  𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  →  𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 117 | 110 116 | impbid | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ≤  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ↔  𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 118 | 67 117 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  ∧  𝑥  ∈  ℕ )  →  ( 𝑥  ∈  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ↔  𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 119 | 118 | ex | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝑥  ∈  ℕ  →  ( 𝑥  ∈  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ↔  𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) ) | 
						
							| 120 | 6 10 119 | pm5.21ndd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 𝑥  ∈  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  ↔  𝑥  ∈  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 121 | 120 | eqrdv | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  =  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 122 | 121 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ♯ ‘ ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) )  =  ( ♯ ‘ ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 123 | 64 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ0 ) | 
						
							| 124 |  | hashfz1 | ⊢ ( sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) )  =  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) | 
						
							| 125 | 123 124 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ♯ ‘ ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) )  =  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) ) | 
						
							| 126 |  | hashen | ⊢ ( ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ∈  Fin  ∧  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  ∈  Fin )  →  ( ( ♯ ‘ ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) )  ↔  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≈  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) ) | 
						
							| 127 | 45 22 126 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ( ♯ ‘ ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) )  ↔  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) )  ≈  ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) ) | 
						
							| 128 | 43 127 | mpbird | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( ♯ ‘ ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) )  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) ) | 
						
							| 129 | 122 125 128 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  )  =  ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) ) | 
						
							| 130 | 129 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 1 ... sup ( ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ,  ℝ ,   <  ) )  =  ( 1 ... ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) ) ) | 
						
							| 131 | 130 121 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) )  →  ( 1 ... ( ♯ ‘ ( 𝐺  “  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) ) )  =  ( ◡ 𝐺  “  ( 𝑀 ... 𝑁 ) ) ) |