| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim2ser.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
iserex.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
| 3 |
|
iserex.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 4 |
|
seqeq1 |
⊢ ( 𝑁 = 𝑀 → seq 𝑁 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑁 = 𝑀 → ( seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 6 |
5
|
bicomd |
⊢ ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → 𝜑 ) |
| 9 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 12 |
11
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 13 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 14 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 16 |
15
|
seqeq1d |
⊢ ( 𝜑 → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) = seq 𝑁 ( + , 𝐹 ) ) |
| 17 |
8 16
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) = seq 𝑁 ( + , 𝐹 ) ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 19 |
18 1
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 𝑁 − 1 ) ∈ 𝑍 ) |
| 20 |
8 3
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 22 |
|
climdm |
⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 23 |
21 22
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 24 |
1 19 20 23
|
clim2ser |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 25 |
17 24
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 26 |
|
climrel |
⊢ Rel ⇝ |
| 27 |
26
|
releldmi |
⊢ ( seq 𝑁 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 28 |
25 27
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 30 |
29 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 1 ) ∈ 𝑍 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 𝑁 − 1 ) ∈ 𝑍 ) |
| 32 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → 𝜑 ) |
| 33 |
32 3
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 34 |
32 16
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) = seq 𝑁 ( + , 𝐹 ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 36 |
|
climdm |
⊢ ( seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) ) |
| 37 |
35 36
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) ) |
| 38 |
34 37
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) ) |
| 39 |
1 31 33 38
|
clim2ser2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) + ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 40 |
26
|
releldmi |
⊢ ( seq 𝑀 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) + ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 42 |
28 41
|
impbida |
⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 43 |
42
|
ex |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) ) |
| 44 |
|
uzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 45 |
9 44
|
syl |
⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 46 |
7 43 45
|
mpjaod |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |