Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
iserge0.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
iserge0.3 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) |
4 |
|
iserge0.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
5 |
|
iserge0.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
6 |
|
serclim0 |
⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
9 |
8 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
|
c0ex |
⊢ 0 ∈ V |
11 |
10
|
fvconst2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
12 |
9 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 ) |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
12 13
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) ∈ ℝ ) |
15 |
12 5
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
16 |
1 2 7 3 14 4 15
|
iserle |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |