Metamath Proof Explorer


Theorem iseriALT

Description: Alternate proof of iseri , avoiding the usage of mptru and T. as antecedent by using ax-mp and one of the hypotheses as antecedent. This results, however, in a slightly longer proof. (Contributed by AV, 30-Apr-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses iseri.1 Rel 𝑅
iseri.2 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
iseri.3 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 )
iseri.4 ( 𝑥𝐴𝑥 𝑅 𝑥 )
Assertion iseriALT 𝑅 Er 𝐴

Proof

Step Hyp Ref Expression
1 iseri.1 Rel 𝑅
2 iseri.2 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
3 iseri.3 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 )
4 iseri.4 ( 𝑥𝐴𝑥 𝑅 𝑥 )
5 id ( Rel 𝑅 → Rel 𝑅 )
6 2 adantl ( ( Rel 𝑅𝑥 𝑅 𝑦 ) → 𝑦 𝑅 𝑥 )
7 3 adantl ( ( Rel 𝑅 ∧ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 )
8 4 a1i ( Rel 𝑅 → ( 𝑥𝐴𝑥 𝑅 𝑥 ) )
9 5 6 7 8 iserd ( Rel 𝑅𝑅 Er 𝐴 )
10 1 9 ax-mp 𝑅 Er 𝐴