Metamath Proof Explorer


Theorem iserle

Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 𝑍 = ( ℤ𝑀 )
iserle.2 ( 𝜑𝑀 ∈ ℤ )
iserle.4 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
iserle.5 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 )
iserle.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
iserle.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℝ )
iserle.8 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ≤ ( 𝐺𝑘 ) )
Assertion iserle ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 clim2ser.1 𝑍 = ( ℤ𝑀 )
2 iserle.2 ( 𝜑𝑀 ∈ ℤ )
3 iserle.4 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
4 iserle.5 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 )
5 iserle.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
6 iserle.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℝ )
7 iserle.8 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ≤ ( 𝐺𝑘 ) )
8 1 2 5 serfre ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ )
9 8 ffvelrnda ( ( 𝜑𝑗𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ )
10 1 2 6 serfre ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ )
11 10 ffvelrnda ( ( 𝜑𝑗𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ )
12 simpr ( ( 𝜑𝑗𝑍 ) → 𝑗𝑍 )
13 12 1 eleqtrdi ( ( 𝜑𝑗𝑍 ) → 𝑗 ∈ ( ℤ𝑀 ) )
14 simpll ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝜑 )
15 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ𝑀 ) )
16 15 1 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘𝑍 )
17 16 adantl ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘𝑍 )
18 14 17 5 syl2anc ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
19 14 17 6 syl2anc ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺𝑘 ) ∈ ℝ )
20 14 17 7 syl2anc ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹𝑘 ) ≤ ( 𝐺𝑘 ) )
21 13 18 19 20 serle ( ( 𝜑𝑗𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) )
22 1 2 3 4 9 11 21 climle ( 𝜑𝐴𝐵 )