Step |
Hyp |
Ref |
Expression |
1 |
|
iserodd.f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
2 |
|
iserodd.h |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 = 𝐶 ) |
3 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
6 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
7 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
9 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( 2 · 𝑚 ) ∈ ℕ0 ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 · 𝑚 ) ∈ ℕ0 ) |
11 |
|
nn0p1nn |
⊢ ( ( 2 · 𝑚 ) ∈ ℕ0 → ( ( 2 · 𝑚 ) + 1 ) ∈ ℕ ) |
12 |
10 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 · 𝑚 ) + 1 ) ∈ ℕ ) |
13 |
12
|
fmpttd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) : ℕ0 ⟶ ℕ ) |
14 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) ∈ ℕ0 ) |
15 |
8 14
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) ∈ ℕ0 ) |
16 |
15
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) ∈ ℝ ) |
17 |
|
peano2nn0 |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℕ0 ) |
18 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) → ( 2 · ( 𝑖 + 1 ) ) ∈ ℕ0 ) |
19 |
8 17 18
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · ( 𝑖 + 1 ) ) ∈ ℕ0 ) |
20 |
19
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · ( 𝑖 + 1 ) ) ∈ ℝ ) |
21 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 1 ∈ ℝ ) |
22 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℝ ) |
24 |
23
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 < ( 𝑖 + 1 ) ) |
25 |
|
1red |
⊢ ( 𝑖 ∈ ℕ0 → 1 ∈ ℝ ) |
26 |
22 25
|
readdcld |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 + 1 ) ∈ ℝ ) |
27 |
|
2rp |
⊢ 2 ∈ ℝ+ |
28 |
27
|
a1i |
⊢ ( 𝑖 ∈ ℕ0 → 2 ∈ ℝ+ ) |
29 |
22 26 28
|
ltmul2d |
⊢ ( 𝑖 ∈ ℕ0 → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 2 · 𝑖 ) < ( 2 · ( 𝑖 + 1 ) ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 < ( 𝑖 + 1 ) ↔ ( 2 · 𝑖 ) < ( 2 · ( 𝑖 + 1 ) ) ) ) |
31 |
24 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 2 · 𝑖 ) < ( 2 · ( 𝑖 + 1 ) ) ) |
32 |
16 20 21 31
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 2 · 𝑖 ) + 1 ) < ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
33 |
|
oveq2 |
⊢ ( 𝑚 = 𝑖 → ( 2 · 𝑚 ) = ( 2 · 𝑖 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑚 = 𝑖 → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · 𝑖 ) + 1 ) ) |
35 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) |
36 |
|
ovex |
⊢ ( ( 2 · 𝑖 ) + 1 ) ∈ V |
37 |
34 35 36
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) = ( ( 2 · 𝑖 ) + 1 ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) = ( ( 2 · 𝑖 ) + 1 ) ) |
39 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
40 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑖 + 1 ) → ( 2 · 𝑚 ) = ( 2 · ( 𝑖 + 1 ) ) ) |
41 |
40
|
oveq1d |
⊢ ( 𝑚 = ( 𝑖 + 1 ) → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
42 |
|
ovex |
⊢ ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ∈ V |
43 |
41 35 42
|
fvmpt |
⊢ ( ( 𝑖 + 1 ) ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ ( 𝑖 + 1 ) ) = ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
44 |
39 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ ( 𝑖 + 1 ) ) = ( ( 2 · ( 𝑖 + 1 ) ) + 1 ) ) |
45 |
32 38 44
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) < ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ ( 𝑖 + 1 ) ) ) |
46 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
48 |
|
0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 0 ∈ ℂ ) |
49 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
51 |
|
odd2np1 |
⊢ ( 𝑛 ∈ ℤ → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) |
53 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 𝑘 ∈ ℤ ) |
54 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
55 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
56 |
55
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 𝑛 − 1 ) ∈ ℝ ) |
57 |
27
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 2 ∈ ℝ+ ) |
58 |
55
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 0 ≤ ( 𝑛 − 1 ) ) |
59 |
56 57 58
|
divge0d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 0 ≤ ( ( 𝑛 − 1 ) / 2 ) ) |
60 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) |
61 |
60
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 𝑛 − 1 ) ) |
62 |
|
2cn |
⊢ 2 ∈ ℂ |
63 |
|
zcn |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) |
64 |
63
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 𝑘 ∈ ℂ ) |
65 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 2 · 𝑘 ) ∈ ℂ ) |
66 |
62 64 65
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
67 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
68 |
|
pncan |
⊢ ( ( ( 2 · 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
69 |
66 67 68
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
70 |
61 69
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( 𝑛 − 1 ) = ( 2 · 𝑘 ) ) |
71 |
70
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 𝑛 − 1 ) / 2 ) = ( ( 2 · 𝑘 ) / 2 ) ) |
72 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 2 ∈ ℂ ) |
73 |
|
2ne0 |
⊢ 2 ≠ 0 |
74 |
73
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 2 ≠ 0 ) |
75 |
64 72 74
|
divcan3d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
76 |
71 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → ( ( 𝑛 − 1 ) / 2 ) = 𝑘 ) |
77 |
59 76
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 0 ≤ 𝑘 ) |
78 |
|
elnn0z |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℤ ∧ 0 ≤ 𝑘 ) ) |
79 |
53 77 78
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) ) → 𝑘 ∈ ℕ0 ) |
80 |
79
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → 𝑘 ∈ ℕ0 ) ) |
81 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) |
82 |
81
|
eqcomd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) |
83 |
80 82
|
jca2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 ) → ( 𝑘 ∈ ℕ0 ∧ 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
84 |
83
|
reximdv2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = 𝑛 → ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) |
85 |
52 84
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 → ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) |
86 |
2
|
eleq1d |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
87 |
1 86
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 ∈ ℂ ) ) |
88 |
87
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 ∈ ℂ ) ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → 𝐵 ∈ ℂ ) ) |
90 |
85 89
|
syld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 → 𝐵 ∈ ℂ ) ) |
91 |
90
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 𝐵 ∈ ℂ ) |
92 |
48 91
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ∈ ℂ ) |
93 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) |
94 |
93
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ∈ ℂ ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) |
95 |
47 92 94
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) |
96 |
46 95
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) |
97 |
|
eldif |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) |
98 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 2 · 𝑚 ) = ( 2 · 𝑘 ) ) |
99 |
98
|
oveq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
100 |
99
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 2 · 𝑘 ) + 1 ) ) |
101 |
100
|
elrnmpt |
⊢ ( 𝑛 ∈ V → ( 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ↔ ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) ) |
102 |
101
|
elv |
⊢ ( 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ↔ ∃ 𝑘 ∈ ℕ0 𝑛 = ( ( 2 · 𝑘 ) + 1 ) ) |
103 |
85 102
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 → 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) |
104 |
103
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ¬ 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) → 2 ∥ 𝑛 ) ) |
105 |
104
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → 2 ∥ 𝑛 ) |
106 |
97 105
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → 2 ∥ 𝑛 ) |
107 |
106
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → if ( 2 ∥ 𝑛 , 0 , 𝐵 ) = 0 ) |
108 |
96 107
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ) |
109 |
108
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ) |
110 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 |
111 |
|
nffvmpt1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) |
112 |
111
|
nfeq1 |
⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 |
113 |
|
fveqeq2 |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ↔ ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) ) |
114 |
110 112 113
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑛 ) = 0 ↔ ∀ 𝑗 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) |
115 |
109 114
|
sylib |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) |
116 |
115
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℕ ∖ ran ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) = 0 ) |
117 |
92
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) : ℕ ⟶ ℂ ) |
118 |
117
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ 𝑗 ) ∈ ℂ ) |
119 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
120 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) |
121 |
120
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
122 |
119 1 121
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
123 |
|
ovex |
⊢ ( ( 2 · 𝑘 ) + 1 ) ∈ V |
124 |
99 35 123
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
127 |
|
breq2 |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 2 ∥ 𝑛 ↔ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) |
128 |
127 2
|
ifbieq2d |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → if ( 2 ∥ 𝑛 , 0 , 𝐵 ) = if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) ) |
129 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
130 |
8 129
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
131 |
|
nn0p1nn |
⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
132 |
130 131
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
133 |
|
2z |
⊢ 2 ∈ ℤ |
134 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
135 |
134
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
136 |
|
dvdsmul1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 2 ∥ ( 2 · 𝑘 ) ) |
137 |
133 135 136
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∥ ( 2 · 𝑘 ) ) |
138 |
130
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℤ ) |
139 |
|
2nn |
⊢ 2 ∈ ℕ |
140 |
139
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℕ ) |
141 |
|
1lt2 |
⊢ 1 < 2 |
142 |
141
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 < 2 ) |
143 |
|
ndvdsp1 |
⊢ ( ( ( 2 · 𝑘 ) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2 ) → ( 2 ∥ ( 2 · 𝑘 ) → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) |
144 |
138 140 142 143
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ∥ ( 2 · 𝑘 ) → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) |
145 |
137 144
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) |
146 |
145
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) = 𝐶 ) |
147 |
146 1
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) ∈ ℂ ) |
148 |
93 128 132 147
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = if ( 2 ∥ ( ( 2 · 𝑘 ) + 1 ) , 0 , 𝐶 ) ) |
149 |
126 148 146
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) = 𝐶 ) |
150 |
122 149
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ) |
151 |
150
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ) |
152 |
|
nfv |
⊢ Ⅎ 𝑖 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) |
153 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) |
154 |
153
|
nfeq1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) |
155 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) ) |
156 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) |
157 |
155 156
|
eqeq12d |
⊢ ( 𝑘 = 𝑖 → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) ) |
158 |
152 154 157
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑘 ) ) ↔ ∀ 𝑖 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) |
159 |
151 158
|
sylib |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) |
160 |
159
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑖 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ‘ ( ( 𝑚 ∈ ℕ0 ↦ ( ( 2 · 𝑚 ) + 1 ) ) ‘ 𝑖 ) ) ) |
161 |
3 4 5 6 13 45 116 118 160
|
isercoll2 |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , 𝐵 ) ) ) ⇝ 𝐴 ) ) |