Step |
Hyp |
Ref |
Expression |
1 |
|
isexid.1 |
⊢ 𝑋 = dom dom 𝐺 |
2 |
|
dmeq |
⊢ ( 𝑔 = 𝐺 → dom 𝑔 = dom 𝐺 ) |
3 |
2
|
dmeqd |
⊢ ( 𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺 ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → dom dom 𝑔 = 𝑋 ) |
5 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ↔ ( 𝑥 𝐺 𝑦 ) = 𝑦 ) ) |
7 |
|
oveq |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 𝑔 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 𝑔 𝑥 ) = 𝑦 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) |
9 |
6 8
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
10 |
4 9
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
11 |
4 10
|
rexeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
12 |
|
df-exid |
⊢ ExId = { 𝑔 ∣ ∃ 𝑥 ∈ dom dom 𝑔 ∀ 𝑦 ∈ dom dom 𝑔 ( ( 𝑥 𝑔 𝑦 ) = 𝑦 ∧ ( 𝑦 𝑔 𝑥 ) = 𝑦 ) } |
13 |
11 12
|
elab2g |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ExId ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |