| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isexid2.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | rngopidOLD | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ran  𝐺  =  dom  dom  𝐺 ) | 
						
							| 3 |  | elin | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  ↔  ( 𝐺  ∈  Magma  ∧  𝐺  ∈   ExId  ) ) | 
						
							| 4 |  | eqid | ⊢ dom  dom  𝐺  =  dom  dom  𝐺 | 
						
							| 5 | 4 | isexid | ⊢ ( 𝐺  ∈   ExId   →  ( 𝐺  ∈   ExId   ↔  ∃ 𝑢  ∈  dom  dom  𝐺 ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 6 | 5 | ibi | ⊢ ( 𝐺  ∈   ExId   →  ∃ 𝑢  ∈  dom  dom  𝐺 ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) | 
						
							| 7 | 6 | a1d | ⊢ ( 𝐺  ∈   ExId   →  ( 𝑋  =  dom  dom  𝐺  →  ∃ 𝑢  ∈  dom  dom  𝐺 ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐺  ∈  Magma  ∧  𝐺  ∈   ExId  )  →  ( 𝑋  =  dom  dom  𝐺  →  ∃ 𝑢  ∈  dom  dom  𝐺 ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 9 | 3 8 | sylbi | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ( 𝑋  =  dom  dom  𝐺  →  ∃ 𝑢  ∈  dom  dom  𝐺 ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 10 |  | eqeq2 | ⊢ ( ran  𝐺  =  dom  dom  𝐺  →  ( 𝑋  =  ran  𝐺  ↔  𝑋  =  dom  dom  𝐺 ) ) | 
						
							| 11 |  | raleq | ⊢ ( ran  𝐺  =  dom  dom  𝐺  →  ( ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 12 | 11 | rexeqbi1dv | ⊢ ( ran  𝐺  =  dom  dom  𝐺  →  ( ∃ 𝑢  ∈  ran  𝐺 ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ↔  ∃ 𝑢  ∈  dom  dom  𝐺 ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 13 | 10 12 | imbi12d | ⊢ ( ran  𝐺  =  dom  dom  𝐺  →  ( ( 𝑋  =  ran  𝐺  →  ∃ 𝑢  ∈  ran  𝐺 ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) )  ↔  ( 𝑋  =  dom  dom  𝐺  →  ∃ 𝑢  ∈  dom  dom  𝐺 ∀ 𝑥  ∈  dom  dom  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) ) | 
						
							| 14 | 9 13 | imbitrrid | ⊢ ( ran  𝐺  =  dom  dom  𝐺  →  ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ( 𝑋  =  ran  𝐺  →  ∃ 𝑢  ∈  ran  𝐺 ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) ) | 
						
							| 15 | 2 14 | mpcom | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ( 𝑋  =  ran  𝐺  →  ∃ 𝑢  ∈  ran  𝐺 ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 16 | 15 | com12 | ⊢ ( 𝑋  =  ran  𝐺  →  ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ∃ 𝑢  ∈  ran  𝐺 ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 17 |  | raleq | ⊢ ( 𝑋  =  ran  𝐺  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 18 | 17 | rexeqbi1dv | ⊢ ( 𝑋  =  ran  𝐺  →  ( ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 )  ↔  ∃ 𝑢  ∈  ran  𝐺 ∀ 𝑥  ∈  ran  𝐺 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 19 | 16 18 | sylibrd | ⊢ ( 𝑋  =  ran  𝐺  →  ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) ) | 
						
							| 20 | 1 19 | ax-mp | ⊢ ( 𝐺  ∈  ( Magma  ∩   ExId  )  →  ∃ 𝑢  ∈  𝑋 ∀ 𝑥  ∈  𝑋 ( ( 𝑢 𝐺 𝑥 )  =  𝑥  ∧  ( 𝑥 𝐺 𝑢 )  =  𝑥 ) ) |