Metamath Proof Explorer


Theorem isf32lem11

Description: Lemma for isfin3-2 . Remove hypotheses from isf32lem10 . (Contributed by Stefan O'Rear, 17-May-2015)

Ref Expression
Assertion isf32lem11 ( ( 𝐺𝑉 ∧ ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ∧ ¬ ran 𝐹 ∈ ran 𝐹 ) ) → ω ≼* 𝐺 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ∧ ¬ ran 𝐹 ∈ ran 𝐹 ) → 𝐹 : ω ⟶ 𝒫 𝐺 )
2 suceq ( 𝑏 = 𝑐 → suc 𝑏 = suc 𝑐 )
3 2 fveq2d ( 𝑏 = 𝑐 → ( 𝐹 ‘ suc 𝑏 ) = ( 𝐹 ‘ suc 𝑐 ) )
4 fveq2 ( 𝑏 = 𝑐 → ( 𝐹𝑏 ) = ( 𝐹𝑐 ) )
5 3 4 sseq12d ( 𝑏 = 𝑐 → ( ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ↔ ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹𝑐 ) ) )
6 5 cbvralvw ( ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ↔ ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹𝑐 ) )
7 6 biimpi ( ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) → ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹𝑐 ) )
8 7 3ad2ant2 ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ∧ ¬ ran 𝐹 ∈ ran 𝐹 ) → ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹𝑐 ) )
9 simp3 ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ∧ ¬ ran 𝐹 ∈ ran 𝐹 ) → ¬ ran 𝐹 ∈ ran 𝐹 )
10 suceq ( 𝑒 = 𝑑 → suc 𝑒 = suc 𝑑 )
11 10 fveq2d ( 𝑒 = 𝑑 → ( 𝐹 ‘ suc 𝑒 ) = ( 𝐹 ‘ suc 𝑑 ) )
12 fveq2 ( 𝑒 = 𝑑 → ( 𝐹𝑒 ) = ( 𝐹𝑑 ) )
13 11 12 psseq12d ( 𝑒 = 𝑑 → ( ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) ↔ ( 𝐹 ‘ suc 𝑑 ) ⊊ ( 𝐹𝑑 ) ) )
14 13 cbvrabv { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } = { 𝑑 ∈ ω ∣ ( 𝐹 ‘ suc 𝑑 ) ⊊ ( 𝐹𝑑 ) }
15 eqid ( 𝑓 ∈ ω ↦ ( 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ) ≈ 𝑓 ) ) = ( 𝑓 ∈ ω ↦ ( 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ) ≈ 𝑓 ) )
16 eqid ( ( ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ↦ ( ( 𝐹 ) ∖ ( 𝐹 ‘ suc ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ) ≈ 𝑓 ) ) ) = ( ( ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ↦ ( ( 𝐹 ) ∖ ( 𝐹 ‘ suc ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ) ≈ 𝑓 ) ) )
17 eqid ( 𝑘𝐺 ↦ ( ℩ 𝑙 ( 𝑙 ∈ ω ∧ 𝑘 ∈ ( ( ( ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ↦ ( ( 𝐹 ) ∖ ( 𝐹 ‘ suc ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ) ≈ 𝑓 ) ) ) ‘ 𝑙 ) ) ) ) = ( 𝑘𝐺 ↦ ( ℩ 𝑙 ( 𝑙 ∈ ω ∧ 𝑘 ∈ ( ( ( ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ↦ ( ( 𝐹 ) ∖ ( 𝐹 ‘ suc ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹𝑒 ) } ) ≈ 𝑓 ) ) ) ‘ 𝑙 ) ) ) )
18 1 8 9 14 15 16 17 isf32lem10 ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ∧ ¬ ran 𝐹 ∈ ran 𝐹 ) → ( 𝐺𝑉 → ω ≼* 𝐺 ) )
19 18 impcom ( ( 𝐺𝑉 ∧ ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹𝑏 ) ∧ ¬ ran 𝐹 ∈ ran 𝐹 ) ) → ω ≼* 𝐺 )