Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → 𝐹 : ω ⟶ 𝒫 𝐺 ) |
2 |
|
suceq |
⊢ ( 𝑏 = 𝑐 → suc 𝑏 = suc 𝑐 ) |
3 |
2
|
fveq2d |
⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ suc 𝑏 ) = ( 𝐹 ‘ suc 𝑐 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑐 ) ) |
5 |
3 4
|
sseq12d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
6 |
5
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
7 |
6
|
biimpi |
⊢ ( ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) → ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → ∀ 𝑐 ∈ ω ( 𝐹 ‘ suc 𝑐 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
9 |
|
simp3 |
⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) |
10 |
|
suceq |
⊢ ( 𝑒 = 𝑑 → suc 𝑒 = suc 𝑑 ) |
11 |
10
|
fveq2d |
⊢ ( 𝑒 = 𝑑 → ( 𝐹 ‘ suc 𝑒 ) = ( 𝐹 ‘ suc 𝑑 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑒 = 𝑑 → ( 𝐹 ‘ 𝑒 ) = ( 𝐹 ‘ 𝑑 ) ) |
13 |
11 12
|
psseq12d |
⊢ ( 𝑒 = 𝑑 → ( ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) ↔ ( 𝐹 ‘ suc 𝑑 ) ⊊ ( 𝐹 ‘ 𝑑 ) ) ) |
14 |
13
|
cbvrabv |
⊢ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } = { 𝑑 ∈ ω ∣ ( 𝐹 ‘ suc 𝑑 ) ⊊ ( 𝐹 ‘ 𝑑 ) } |
15 |
|
eqid |
⊢ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) = ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) |
16 |
|
eqid |
⊢ ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) = ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) |
17 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐺 ↦ ( ℩ 𝑙 ( 𝑙 ∈ ω ∧ 𝑘 ∈ ( ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) ‘ 𝑙 ) ) ) ) = ( 𝑘 ∈ 𝐺 ↦ ( ℩ 𝑙 ( 𝑙 ∈ ω ∧ 𝑘 ∈ ( ( ( ℎ ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ↦ ( ( 𝐹 ‘ ℎ ) ∖ ( 𝐹 ‘ suc ℎ ) ) ) ∘ ( 𝑓 ∈ ω ↦ ( ℩ 𝑔 ∈ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ( 𝑔 ∩ { 𝑒 ∈ ω ∣ ( 𝐹 ‘ suc 𝑒 ) ⊊ ( 𝐹 ‘ 𝑒 ) } ) ≈ 𝑓 ) ) ) ‘ 𝑙 ) ) ) ) |
18 |
1 8 9 14 15 16 17
|
isf32lem10 |
⊢ ( ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) → ( 𝐺 ∈ 𝑉 → ω ≼* 𝐺 ) ) |
19 |
18
|
impcom |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝐹 : ω ⟶ 𝒫 𝐺 ∧ ∀ 𝑏 ∈ ω ( 𝐹 ‘ suc 𝑏 ) ⊆ ( 𝐹 ‘ 𝑏 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) ) → ω ≼* 𝐺 ) |