Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem.a |
⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) |
2 |
|
isf32lem.b |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
3 |
|
isf32lem.c |
⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) |
4 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ∈ ω ) |
5 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ω ) |
6 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
7 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → 𝜑 ) |
8 |
|
incom |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ( ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ∩ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ) |
9 |
1 2 3
|
isf32lem3 |
⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ∩ ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ) = ∅ ) |
10 |
8 9
|
eqtrid |
⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
11 |
4 5 6 7 10
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
12 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ ω ) |
13 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ω ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → 𝜑 ) |
16 |
1 2 3
|
isf32lem3 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜑 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
17 |
12 13 14 15 16
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) ∧ 𝐵 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |
18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → 𝐴 ≠ 𝐵 ) |
19 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
20 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
21 |
|
ordtri3 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
22 |
19 20 21
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
24 |
23
|
necon2abid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ 𝐴 ≠ 𝐵 ) ) |
25 |
18 24
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
26 |
11 17 25
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∖ ( 𝐹 ‘ suc 𝐴 ) ) ∩ ( ( 𝐹 ‘ 𝐵 ) ∖ ( 𝐹 ‘ suc 𝐵 ) ) ) = ∅ ) |