Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem.a |
⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) |
2 |
|
isf32lem.b |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
3 |
|
isf32lem.c |
⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) |
4 |
|
isf32lem.d |
⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } |
5 |
|
isf32lem.e |
⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) |
6 |
|
isf32lem.f |
⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) |
7 |
6
|
fveq1i |
⊢ ( 𝐾 ‘ 𝐴 ) = ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) |
8 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ω |
9 |
1 2 3 4
|
isf32lem5 |
⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |
10 |
5
|
fin23lem22 |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐽 : ω –1-1-onto→ 𝑆 ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝜑 → 𝐽 : ω –1-1-onto→ 𝑆 ) |
12 |
|
f1of |
⊢ ( 𝐽 : ω –1-1-onto→ 𝑆 → 𝐽 : ω ⟶ 𝑆 ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐽 : ω ⟶ 𝑆 ) |
14 |
|
fvco3 |
⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
15 |
13 14
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
16 |
15
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
17 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐽 : ω ⟶ 𝑆 ) |
18 |
|
simpl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) |
19 |
|
ffvelrn |
⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐴 ∈ ω ) → ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 ) |
21 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ) |
22 |
|
suceq |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → suc 𝑤 = suc ( 𝐽 ‘ 𝐴 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) |
24 |
21 23
|
difeq12d |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
25 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) = ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) |
26 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∈ V |
27 |
26
|
difexi |
⊢ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∈ V |
28 |
24 25 27
|
fvmpt |
⊢ ( ( 𝐽 ‘ 𝐴 ) ∈ 𝑆 → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
29 |
20 28
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
30 |
16 29
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
31 |
7 30
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐾 ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ) |
32 |
6
|
fveq1i |
⊢ ( 𝐾 ‘ 𝐵 ) = ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) |
33 |
|
fvco3 |
⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐵 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) ) |
34 |
13 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ω ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) ) |
35 |
34
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) ) |
36 |
|
simpr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → 𝐵 ∈ ω ) |
37 |
|
ffvelrn |
⊢ ( ( 𝐽 : ω ⟶ 𝑆 ∧ 𝐵 ∈ ω ) → ( 𝐽 ‘ 𝐵 ) ∈ 𝑆 ) |
38 |
17 36 37
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐵 ) ∈ 𝑆 ) |
39 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ) |
40 |
|
suceq |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → suc 𝑤 = suc ( 𝐽 ‘ 𝐵 ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) |
42 |
39 41
|
difeq12d |
⊢ ( 𝑤 = ( 𝐽 ‘ 𝐵 ) → ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
43 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∈ V |
44 |
43
|
difexi |
⊢ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ∈ V |
45 |
42 25 44
|
fvmpt |
⊢ ( ( 𝐽 ‘ 𝐵 ) ∈ 𝑆 → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
46 |
38 45
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
47 |
35 46
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐵 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
48 |
32 47
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐾 ‘ 𝐵 ) = ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) |
49 |
31 48
|
ineq12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐾 ‘ 𝐴 ) ∩ ( 𝐾 ‘ 𝐵 ) ) = ( ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∩ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) ) |
50 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → 𝜑 ) |
51 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → 𝐴 ≠ 𝐵 ) |
52 |
|
f1of1 |
⊢ ( 𝐽 : ω –1-1-onto→ 𝑆 → 𝐽 : ω –1-1→ 𝑆 ) |
53 |
11 52
|
syl |
⊢ ( 𝜑 → 𝐽 : ω –1-1→ 𝑆 ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐽 : ω –1-1→ 𝑆 ) |
55 |
|
f1fveq |
⊢ ( ( 𝐽 : ω –1-1→ 𝑆 ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐽 ‘ 𝐴 ) = ( 𝐽 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
56 |
54 55
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐽 ‘ 𝐴 ) = ( 𝐽 ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
57 |
56
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐽 ‘ 𝐴 ) = ( 𝐽 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
58 |
57
|
necon3d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐴 ≠ 𝐵 → ( 𝐽 ‘ 𝐴 ) ≠ ( 𝐽 ‘ 𝐵 ) ) ) |
59 |
51 58
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐴 ) ≠ ( 𝐽 ‘ 𝐵 ) ) |
60 |
8 20
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐴 ) ∈ ω ) |
61 |
8 38
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐽 ‘ 𝐵 ) ∈ ω ) |
62 |
1 2 3
|
isf32lem4 |
⊢ ( ( ( 𝜑 ∧ ( 𝐽 ‘ 𝐴 ) ≠ ( 𝐽 ‘ 𝐵 ) ) ∧ ( ( 𝐽 ‘ 𝐴 ) ∈ ω ∧ ( 𝐽 ‘ 𝐵 ) ∈ ω ) ) → ( ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∩ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) = ∅ ) |
63 |
50 59 60 61 62
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐴 ) ) ) ∩ ( ( 𝐹 ‘ ( 𝐽 ‘ 𝐵 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽 ‘ 𝐵 ) ) ) ) = ∅ ) |
64 |
49 63
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( ( 𝐾 ‘ 𝐴 ) ∩ ( 𝐾 ‘ 𝐵 ) ) = ∅ ) |