Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem.a |
⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) |
2 |
|
isf32lem.b |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
3 |
|
isf32lem.c |
⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) |
4 |
|
isf32lem.d |
⊢ 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹 ‘ 𝑦 ) } |
5 |
|
isf32lem.e |
⊢ 𝐽 = ( 𝑢 ∈ ω ↦ ( ℩ 𝑣 ∈ 𝑆 ( 𝑣 ∩ 𝑆 ) ≈ 𝑢 ) ) |
6 |
|
isf32lem.f |
⊢ 𝐾 = ( ( 𝑤 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) |
7 |
|
isf32lem.g |
⊢ 𝐿 = ( 𝑡 ∈ 𝐺 ↦ ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
8 |
|
ssab2 |
⊢ { 𝑠 ∣ ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) } ⊆ ω |
9 |
|
iotacl |
⊢ ( ∃! 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ∈ { 𝑠 ∣ ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) } ) |
10 |
8 9
|
sselid |
⊢ ( ∃! 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ∈ ω ) |
11 |
|
iotanul |
⊢ ( ¬ ∃! 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) = ∅ ) |
12 |
|
peano1 |
⊢ ∅ ∈ ω |
13 |
11 12
|
eqeltrdi |
⊢ ( ¬ ∃! 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ∈ ω ) |
14 |
10 13
|
pm2.61i |
⊢ ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ∈ ω |
15 |
14
|
a1i |
⊢ ( 𝑡 ∈ 𝐺 → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ∈ ω ) |
16 |
7 15
|
fmpti |
⊢ 𝐿 : 𝐺 ⟶ ω |
17 |
16
|
a1i |
⊢ ( 𝜑 → 𝐿 : 𝐺 ⟶ ω ) |
18 |
1 2 3 4 5 6
|
isf32lem6 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ( 𝐾 ‘ 𝑎 ) ≠ ∅ ) |
19 |
|
n0 |
⊢ ( ( 𝐾 ‘ 𝑎 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) |
20 |
18 19
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ∃ 𝑏 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) |
21 |
1 2 3 4 5 6
|
isf32lem8 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ( 𝐾 ‘ 𝑎 ) ⊆ 𝐺 ) |
22 |
21
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ) ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) → 𝑏 ∈ 𝐺 ) |
23 |
|
eleq1w |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ↔ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ↔ ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
25 |
24
|
iotabidv |
⊢ ( 𝑡 = 𝑏 → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) = ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
26 |
|
iotaex |
⊢ ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑡 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ∈ V |
27 |
25 7 26
|
fvmpt3i |
⊢ ( 𝑏 ∈ 𝐺 → ( 𝐿 ‘ 𝑏 ) = ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
28 |
22 27
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ) ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) → ( 𝐿 ‘ 𝑏 ) = ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
29 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) → 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) |
30 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ∧ 𝑠 ≠ 𝑎 ) → 𝜑 ) |
31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ∧ 𝑠 ≠ 𝑎 ) → 𝑠 ≠ 𝑎 ) |
32 |
31
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ∧ 𝑠 ≠ 𝑎 ) → 𝑎 ≠ 𝑠 ) |
33 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ∧ 𝑠 ≠ 𝑎 ) → 𝑎 ∈ ω ) |
34 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ∧ 𝑠 ≠ 𝑎 ) → 𝑠 ∈ ω ) |
35 |
1 2 3 4 5 6
|
isf32lem7 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ≠ 𝑠 ) ∧ ( 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ) → ( ( 𝐾 ‘ 𝑎 ) ∩ ( 𝐾 ‘ 𝑠 ) ) = ∅ ) |
36 |
30 32 33 34 35
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ∧ 𝑠 ≠ 𝑎 ) → ( ( 𝐾 ‘ 𝑎 ) ∩ ( 𝐾 ‘ 𝑠 ) ) = ∅ ) |
37 |
|
disj1 |
⊢ ( ( ( 𝐾 ‘ 𝑎 ) ∩ ( 𝐾 ‘ 𝑠 ) ) = ∅ ↔ ∀ 𝑏 ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
38 |
36 37
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) ∧ 𝑠 ≠ 𝑎 ) → ∀ 𝑏 ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
39 |
38
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) → ( 𝑠 ≠ 𝑎 → ∀ 𝑏 ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
40 |
|
sp |
⊢ ( ∀ 𝑏 ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) → ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
41 |
39 40
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) → ( 𝑠 ≠ 𝑎 → ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
42 |
41
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) → ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ( 𝑠 ≠ 𝑎 → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
43 |
42
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) → ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ( 𝑠 ≠ 𝑎 → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
44 |
29 43
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) → ( 𝑠 ≠ 𝑎 → ¬ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
45 |
44
|
necon4ad |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ∧ 𝑠 ∈ ω ) → ( 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) → 𝑠 = 𝑎 ) ) |
46 |
45
|
3expia |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ) → ( 𝑠 ∈ ω → ( 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) → 𝑠 = 𝑎 ) ) ) |
47 |
46
|
impd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ) → ( ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) → 𝑠 = 𝑎 ) ) |
48 |
|
eleq1w |
⊢ ( 𝑠 = 𝑎 → ( 𝑠 ∈ ω ↔ 𝑎 ∈ ω ) ) |
49 |
|
fveq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐾 ‘ 𝑠 ) = ( 𝐾 ‘ 𝑎 ) ) |
50 |
49
|
eleq2d |
⊢ ( 𝑠 = 𝑎 → ( 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ↔ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ) |
51 |
48 50
|
anbi12d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ↔ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ) ) |
52 |
51
|
biimprcd |
⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) → ( 𝑠 = 𝑎 → ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
53 |
52
|
ancoms |
⊢ ( ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ∧ 𝑎 ∈ ω ) → ( 𝑠 = 𝑎 → ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
54 |
53
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ) → ( 𝑠 = 𝑎 → ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) ) |
55 |
47 54
|
impbid |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ) → ( ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ↔ 𝑠 = 𝑎 ) ) |
56 |
55
|
iota5 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) ∧ 𝑎 ∈ ω ) → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) = 𝑎 ) |
57 |
56
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ) ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) → ( ℩ 𝑠 ( 𝑠 ∈ ω ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑠 ) ) ) = 𝑎 ) |
58 |
28 57
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ) ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) → 𝑎 = ( 𝐿 ‘ 𝑏 ) ) |
59 |
22 58
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ω ) ∧ 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) ) → ( 𝑏 ∈ 𝐺 ∧ 𝑎 = ( 𝐿 ‘ 𝑏 ) ) ) |
60 |
59
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ( 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ( 𝑏 ∈ 𝐺 ∧ 𝑎 = ( 𝐿 ‘ 𝑏 ) ) ) ) |
61 |
60
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ( ∃ 𝑏 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ∃ 𝑏 ( 𝑏 ∈ 𝐺 ∧ 𝑎 = ( 𝐿 ‘ 𝑏 ) ) ) ) |
62 |
|
df-rex |
⊢ ( ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐿 ‘ 𝑏 ) ↔ ∃ 𝑏 ( 𝑏 ∈ 𝐺 ∧ 𝑎 = ( 𝐿 ‘ 𝑏 ) ) ) |
63 |
61 62
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ( ∃ 𝑏 𝑏 ∈ ( 𝐾 ‘ 𝑎 ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐿 ‘ 𝑏 ) ) ) |
64 |
20 63
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ω ) → ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐿 ‘ 𝑏 ) ) |
65 |
64
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐿 ‘ 𝑏 ) ) |
66 |
|
dffo3 |
⊢ ( 𝐿 : 𝐺 –onto→ ω ↔ ( 𝐿 : 𝐺 ⟶ ω ∧ ∀ 𝑎 ∈ ω ∃ 𝑏 ∈ 𝐺 𝑎 = ( 𝐿 ‘ 𝑏 ) ) ) |
67 |
17 65 66
|
sylanbrc |
⊢ ( 𝜑 → 𝐿 : 𝐺 –onto→ ω ) |