| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfin32i | ⊢ ( 𝑓  ∈  FinIII  →  ¬  ω  ≼*  𝑓 ) | 
						
							| 2 |  | fveq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎 ‘ suc  𝑥 )  =  ( 𝑏 ‘ suc  𝑥 ) ) | 
						
							| 3 |  | fveq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎 ‘ 𝑥 )  =  ( 𝑏 ‘ 𝑥 ) ) | 
						
							| 4 | 2 3 | sseq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  ↔  ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 ) ) ) | 
						
							| 5 | 4 | ralbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 ) ) ) | 
						
							| 6 |  | rneq | ⊢ ( 𝑎  =  𝑏  →  ran  𝑎  =  ran  𝑏 ) | 
						
							| 7 | 6 | inteqd | ⊢ ( 𝑎  =  𝑏  →  ∩  ran  𝑎  =  ∩  ran  𝑏 ) | 
						
							| 8 | 7 6 | eleq12d | ⊢ ( 𝑎  =  𝑏  →  ( ∩  ran  𝑎  ∈  ran  𝑎  ↔  ∩  ran  𝑏  ∈  ran  𝑏 ) ) | 
						
							| 9 | 5 8 | imbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 )  ↔  ( ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 )  →  ∩  ran  𝑏  ∈  ran  𝑏 ) ) ) | 
						
							| 10 | 9 | cbvralvw | ⊢ ( ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 )  ↔  ∀ 𝑏  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 )  →  ∩  ran  𝑏  ∈  ran  𝑏 ) ) | 
						
							| 11 |  | pweq | ⊢ ( 𝑔  =  𝑦  →  𝒫  𝑔  =  𝒫  𝑦 ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝑔  =  𝑦  →  ( 𝒫  𝑔  ↑m  ω )  =  ( 𝒫  𝑦  ↑m  ω ) ) | 
						
							| 13 | 12 | raleqdv | ⊢ ( 𝑔  =  𝑦  →  ( ∀ 𝑏  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 )  →  ∩  ran  𝑏  ∈  ran  𝑏 )  ↔  ∀ 𝑏  ∈  ( 𝒫  𝑦  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 )  →  ∩  ran  𝑏  ∈  ran  𝑏 ) ) ) | 
						
							| 14 | 10 13 | bitrid | ⊢ ( 𝑔  =  𝑦  →  ( ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 )  ↔  ∀ 𝑏  ∈  ( 𝒫  𝑦  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 )  →  ∩  ran  𝑏  ∈  ran  𝑏 ) ) ) | 
						
							| 15 | 14 | cbvabv | ⊢ { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) }  =  { 𝑦  ∣  ∀ 𝑏  ∈  ( 𝒫  𝑦  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 )  →  ∩  ran  𝑏  ∈  ran  𝑏 ) } | 
						
							| 16 | 15 | isf32lem12 | ⊢ ( 𝑓  ∈  FinIII  →  ( ¬  ω  ≼*  𝑓  →  𝑓  ∈  { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) } ) ) | 
						
							| 17 | 1 16 | mpd | ⊢ ( 𝑓  ∈  FinIII  →  𝑓  ∈  { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) } ) | 
						
							| 18 | 10 | abbii | ⊢ { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) }  =  { 𝑔  ∣  ∀ 𝑏  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑏 ‘ suc  𝑥 )  ⊆  ( 𝑏 ‘ 𝑥 )  →  ∩  ran  𝑏  ∈  ran  𝑏 ) } | 
						
							| 19 | 18 | fin23lem41 | ⊢ ( 𝑓  ∈  { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) }  →  𝑓  ∈  FinIII ) | 
						
							| 20 | 17 19 | impbii | ⊢ ( 𝑓  ∈  FinIII  ↔  𝑓  ∈  { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) } ) | 
						
							| 21 | 20 | eqriv | ⊢ FinIII  =  { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) } |