Metamath Proof Explorer


Theorem isf34lem2

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
Assertion isf34lem2 ( 𝐴𝑉𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
2 difss ( 𝐴𝑥 ) ⊆ 𝐴
3 elpw2g ( 𝐴𝑉 → ( ( 𝐴𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴𝑥 ) ⊆ 𝐴 ) )
4 2 3 mpbiri ( 𝐴𝑉 → ( 𝐴𝑥 ) ∈ 𝒫 𝐴 )
5 4 adantr ( ( 𝐴𝑉𝑥 ∈ 𝒫 𝐴 ) → ( 𝐴𝑥 ) ∈ 𝒫 𝐴 )
6 5 1 fmptd ( 𝐴𝑉𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 )