Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
Assertion | isf34lem2 | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
2 | difss | ⊢ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 | |
3 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑥 ) ⊆ 𝐴 ) ) | |
4 | 2 3 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝐴 ∖ 𝑥 ) ∈ 𝒫 𝐴 ) |
6 | 5 1 | fmptd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |