| Step |
Hyp |
Ref |
Expression |
| 1 |
|
compss.a |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) |
| 2 |
|
sspwuni |
⊢ ( 𝑋 ⊆ 𝒫 𝐴 ↔ ∪ 𝑋 ⊆ 𝐴 ) |
| 3 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∪ 𝑋 ⊆ 𝐴 ) → ( 𝐹 ‘ ∪ 𝑋 ) = ( 𝐴 ∖ ∪ 𝑋 ) ) |
| 4 |
2 3
|
sylan2b |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝐹 ‘ ∪ 𝑋 ) = ( 𝐴 ∖ ∪ 𝑋 ) ) |
| 5 |
4
|
adantrr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ 𝑋 ) = ( 𝐴 ∖ ∪ 𝑋 ) ) |
| 6 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) → ¬ 𝑏 ∈ ∪ 𝑋 ) |
| 7 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) → 𝑏 ∈ 𝐴 ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) |
| 9 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → ¬ 𝑏 ∈ 𝑎 ) |
| 10 |
8 9
|
eldifd |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( 𝐴 ∖ 𝑎 ) ) |
| 11 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) |
| 12 |
|
elunii |
⊢ ( ( 𝑏 ∈ ( 𝐴 ∖ 𝑎 ) ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) → 𝑏 ∈ ∪ 𝑋 ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) ∧ ¬ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ∪ 𝑋 ) |
| 14 |
13
|
ex |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) → ( ¬ 𝑏 ∈ 𝑎 → 𝑏 ∈ ∪ 𝑋 ) ) |
| 15 |
6 14
|
mt3d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ) ) → 𝑏 ∈ 𝑎 ) |
| 16 |
15
|
expr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 17 |
16
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) → ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 18 |
17
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) → ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 19 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑐 𝑐 ∈ 𝑋 ) |
| 20 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → 𝑋 ⊆ 𝒫 𝐴 ) |
| 21 |
20
|
sselda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ∈ 𝒫 𝐴 ) |
| 22 |
21
|
elpwid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ⊆ 𝐴 ) |
| 23 |
|
dfss4 |
⊢ ( 𝑐 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) = 𝑐 ) |
| 24 |
22 23
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) = 𝑐 ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → 𝑐 ∈ 𝑋 ) |
| 26 |
24 25
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) |
| 27 |
|
difss |
⊢ ( 𝐴 ∖ 𝑐 ) ⊆ 𝐴 |
| 28 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑐 ) ⊆ 𝐴 ) ) |
| 29 |
27 28
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ) |
| 31 |
|
difeq2 |
⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( 𝐴 ∖ 𝑎 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ) |
| 32 |
31
|
eleq1d |
⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) ) |
| 33 |
|
eleq2 |
⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( 𝑏 ∈ 𝑎 ↔ 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) |
| 34 |
32 33
|
imbi12d |
⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ↔ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 35 |
34
|
rspcv |
⊢ ( ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 36 |
30 35
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 37 |
26 36
|
mpid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) |
| 38 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) → 𝑏 ∈ 𝐴 ) |
| 39 |
37 38
|
syl6 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) |
| 40 |
39
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝑐 ∈ 𝑋 → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) ) |
| 41 |
40
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( ∃ 𝑐 𝑐 ∈ 𝑋 → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) ) |
| 42 |
19 41
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝑋 ≠ ∅ → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) ) |
| 43 |
42
|
impr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐴 ) ) |
| 44 |
|
eluni |
⊢ ( 𝑏 ∈ ∪ 𝑋 ↔ ∃ 𝑐 ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) |
| 45 |
29
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ) |
| 46 |
26
|
adantlrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ 𝑐 ∈ 𝑋 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) |
| 47 |
46
|
adantrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 ) |
| 48 |
|
elndif |
⊢ ( 𝑏 ∈ 𝑐 → ¬ 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) |
| 49 |
48
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ¬ 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) |
| 50 |
47 49
|
jcnd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ¬ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) |
| 51 |
34
|
notbid |
⊢ ( 𝑎 = ( 𝐴 ∖ 𝑐 ) → ( ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ↔ ¬ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) |
| 52 |
51
|
rspcev |
⊢ ( ( ( 𝐴 ∖ 𝑐 ) ∈ 𝒫 𝐴 ∧ ¬ ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑐 ) ) ∈ 𝑋 → 𝑏 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → ∃ 𝑎 ∈ 𝒫 𝐴 ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 53 |
45 50 52
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ∃ 𝑎 ∈ 𝒫 𝐴 ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 54 |
|
rexnal |
⊢ ( ∃ 𝑎 ∈ 𝒫 𝐴 ¬ ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ↔ ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 55 |
53 54
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) ∧ ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) ) → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 56 |
55
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 57 |
56
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∃ 𝑐 ( 𝑏 ∈ 𝑐 ∧ 𝑐 ∈ 𝑋 ) → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 58 |
44 57
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝑏 ∈ ∪ 𝑋 → ¬ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 59 |
58
|
con2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ¬ 𝑏 ∈ ∪ 𝑋 ) ) |
| 60 |
43 59
|
jcad |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) → ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) ) |
| 61 |
18 60
|
impbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) ) |
| 62 |
|
eldif |
⊢ ( 𝑏 ∈ ( 𝐴 ∖ ∪ 𝑋 ) ↔ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ∪ 𝑋 ) ) |
| 63 |
|
vex |
⊢ 𝑏 ∈ V |
| 64 |
63
|
elintrab |
⊢ ( 𝑏 ∈ ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 → 𝑏 ∈ 𝑎 ) ) |
| 65 |
61 62 64
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝑏 ∈ ( 𝐴 ∖ ∪ 𝑋 ) ↔ 𝑏 ∈ ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ) ) |
| 66 |
65
|
eqrdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐴 ∖ ∪ 𝑋 ) = ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ) |
| 67 |
5 66
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ 𝑋 ) = ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } ) |
| 68 |
1
|
compss |
⊢ ( 𝐹 “ 𝑋 ) = { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } |
| 69 |
68
|
inteqi |
⊢ ∩ ( 𝐹 “ 𝑋 ) = ∩ { 𝑎 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑎 ) ∈ 𝑋 } |
| 70 |
67 69
|
eqtr4di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ 𝑋 ) = ∩ ( 𝐹 “ 𝑋 ) ) |