Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) |
2 |
|
imassrn |
⊢ ( 𝐹 “ 𝑋 ) ⊆ ran 𝐹 |
3 |
1
|
isf34lem2 |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
5 |
4
|
frnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
6 |
2 5
|
sstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ) |
7 |
|
simprl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ⊆ 𝒫 𝐴 ) |
8 |
4
|
fdmd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → dom 𝐹 = 𝒫 𝐴 ) |
9 |
7 8
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ⊆ dom 𝐹 ) |
10 |
|
sseqin2 |
⊢ ( 𝑋 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑋 ) = 𝑋 ) |
11 |
9 10
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( dom 𝐹 ∩ 𝑋 ) = 𝑋 ) |
12 |
|
simprr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → 𝑋 ≠ ∅ ) |
13 |
11 12
|
eqnetrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( dom 𝐹 ∩ 𝑋 ) ≠ ∅ ) |
14 |
|
imadisj |
⊢ ( ( 𝐹 “ 𝑋 ) = ∅ ↔ ( dom 𝐹 ∩ 𝑋 ) = ∅ ) |
15 |
14
|
necon3bii |
⊢ ( ( 𝐹 “ 𝑋 ) ≠ ∅ ↔ ( dom 𝐹 ∩ 𝑋 ) ≠ ∅ ) |
16 |
13 15
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 “ 𝑋 ) ≠ ∅ ) |
17 |
6 16
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ 𝑋 ) ≠ ∅ ) ) |
18 |
1
|
isf34lem4 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ 𝑋 ) ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) ) |
19 |
17 18
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) ) |
20 |
1
|
isf34lem3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) |
21 |
20
|
adantrr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = 𝑋 ) |
22 |
21
|
inteqd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ∩ ( 𝐹 “ ( 𝐹 “ 𝑋 ) ) = ∩ 𝑋 ) |
23 |
19 22
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) = ∩ 𝑋 ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ( 𝐹 ‘ ∩ 𝑋 ) ) |
25 |
1
|
compsscnv |
⊢ ◡ 𝐹 = 𝐹 |
26 |
25
|
fveq1i |
⊢ ( ◡ 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ( 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) |
27 |
1
|
compssiso |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ) |
28 |
|
isof1o |
⊢ ( 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) → 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ) |
29 |
27 28
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ) |
30 |
|
sspwuni |
⊢ ( ( 𝐹 “ 𝑋 ) ⊆ 𝒫 𝐴 ↔ ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) |
31 |
6 30
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) |
32 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ↔ ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ↔ ∪ ( 𝐹 “ 𝑋 ) ⊆ 𝐴 ) ) |
34 |
31 33
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ) |
35 |
|
f1ocnvfv1 |
⊢ ( ( 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ∧ ∪ ( 𝐹 “ 𝑋 ) ∈ 𝒫 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ∪ ( 𝐹 “ 𝑋 ) ) |
36 |
29 34 35
|
syl2an2r |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ∪ ( 𝐹 “ 𝑋 ) ) |
37 |
26 36
|
eqtr3id |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑋 ) ) ) = ∪ ( 𝐹 “ 𝑋 ) ) |
38 |
24 37
|
eqtr3d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅ ) ) → ( 𝐹 ‘ ∩ 𝑋 ) = ∪ ( 𝐹 “ 𝑋 ) ) |