| Step |
Hyp |
Ref |
Expression |
| 1 |
|
compss.a |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) |
| 2 |
1
|
isf34lem2 |
⊢ ( 𝐴 ∈ FinIII → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
| 5 |
4
|
ffnd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 Fn 𝒫 𝐴 ) |
| 6 |
|
imassrn |
⊢ ( 𝐹 “ ran 𝐺 ) ⊆ ran 𝐹 |
| 7 |
3
|
frnd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
| 9 |
6 8
|
sstrid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ) |
| 10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐴 ∈ FinIII ) |
| 11 |
|
fco |
⊢ ( ( 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
| 12 |
2 11
|
sylan |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
| 14 |
|
sscon |
⊢ ( ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐺 : ω ⟶ 𝒫 𝐴 ) |
| 16 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 17 |
|
fvco3 |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 18 |
15 16 17
|
syl2an |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → 𝐴 ∈ FinIII ) |
| 20 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
| 21 |
15 16 20
|
syl2an |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
| 22 |
21
|
elpwid |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 ) |
| 23 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 24 |
19 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 25 |
18 24
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 26 |
|
fvco3 |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 27 |
26
|
adantll |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 28 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 29 |
28
|
adantll |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 30 |
29
|
elpwid |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ⊆ 𝐴 ) |
| 31 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐺 ‘ 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
| 32 |
19 30 31
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
| 33 |
27 32
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
| 34 |
25 33
|
sseq12d |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ↔ ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 35 |
14 34
|
imbitrrid |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 36 |
35
|
ralimdva |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 37 |
36
|
3impia |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) |
| 38 |
|
fin33i |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) → ∩ ran ( 𝐹 ∘ 𝐺 ) ∈ ran ( 𝐹 ∘ 𝐺 ) ) |
| 39 |
10 13 37 38
|
syl3anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∩ ran ( 𝐹 ∘ 𝐺 ) ∈ ran ( 𝐹 ∘ 𝐺 ) ) |
| 40 |
|
rnco2 |
⊢ ran ( 𝐹 ∘ 𝐺 ) = ( 𝐹 “ ran 𝐺 ) |
| 41 |
40
|
inteqi |
⊢ ∩ ran ( 𝐹 ∘ 𝐺 ) = ∩ ( 𝐹 “ ran 𝐺 ) |
| 42 |
39 41 40
|
3eltr3g |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∩ ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) ) |
| 43 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ∧ ∩ ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
| 44 |
5 9 42 43
|
syl3anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
| 45 |
|
simpl |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐴 ∈ FinIII ) |
| 46 |
6 7
|
sstrid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ) |
| 47 |
|
incom |
⊢ ( dom 𝐹 ∩ ran 𝐺 ) = ( ran 𝐺 ∩ dom 𝐹 ) |
| 48 |
|
frn |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴 ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ 𝒫 𝐴 ) |
| 50 |
3
|
fdmd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐹 = 𝒫 𝐴 ) |
| 51 |
49 50
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ dom 𝐹 ) |
| 52 |
|
dfss2 |
⊢ ( ran 𝐺 ⊆ dom 𝐹 ↔ ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 ) |
| 53 |
51 52
|
sylib |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 ) |
| 54 |
47 53
|
eqtrid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) = ran 𝐺 ) |
| 55 |
|
fdm |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝐴 → dom 𝐺 = ω ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 = ω ) |
| 57 |
|
peano1 |
⊢ ∅ ∈ ω |
| 58 |
|
ne0i |
⊢ ( ∅ ∈ ω → ω ≠ ∅ ) |
| 59 |
57 58
|
mp1i |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ω ≠ ∅ ) |
| 60 |
56 59
|
eqnetrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 ≠ ∅ ) |
| 61 |
|
dm0rn0 |
⊢ ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ ) |
| 62 |
61
|
necon3bii |
⊢ ( dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅ ) |
| 63 |
60 62
|
sylib |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ≠ ∅ ) |
| 64 |
54 63
|
eqnetrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ ) |
| 65 |
|
imadisj |
⊢ ( ( 𝐹 “ ran 𝐺 ) = ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) = ∅ ) |
| 66 |
65
|
necon3bii |
⊢ ( ( 𝐹 “ ran 𝐺 ) ≠ ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ ) |
| 67 |
64 66
|
sylibr |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ≠ ∅ ) |
| 68 |
1
|
isf34lem5 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ≠ ∅ ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
| 69 |
45 46 67 68
|
syl12anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
| 70 |
1
|
isf34lem3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ran 𝐺 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 ) |
| 71 |
45 49 70
|
syl2anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 ) |
| 72 |
71
|
unieqd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ∪ ran 𝐺 ) |
| 73 |
69 72
|
eqtrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ran 𝐺 ) |
| 74 |
73 71
|
eleq12d |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ∪ ran 𝐺 ∈ ran 𝐺 ) ) |
| 75 |
74
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ∪ ran 𝐺 ∈ ran 𝐺 ) ) |
| 76 |
44 75
|
mpbid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∪ ran 𝐺 ∈ ran 𝐺 ) |