Step |
Hyp |
Ref |
Expression |
1 |
|
isfbas |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
2 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
3 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ↔ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
4 |
3
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝐹 ∧ 𝑧 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
5 |
2 4
|
bitri |
⊢ ( 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑧 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
7 |
|
n0 |
⊢ ( ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
8 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
9 |
6 7 8
|
3bitr4i |
⊢ ( ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
10 |
9
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
11 |
10
|
3anbi3i |
⊢ ( ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ↔ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
13 |
1 12
|
bitrdi |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |