Metamath Proof Explorer


Theorem isfbas2

Description: The predicate " F is a filter base." (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion isfbas2 ( 𝐵𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 isfbas ( 𝐵𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ) ) ) )
2 elin ( 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ↔ ( 𝑧𝐹𝑧 ∈ 𝒫 ( 𝑥𝑦 ) ) )
3 velpw ( 𝑧 ∈ 𝒫 ( 𝑥𝑦 ) ↔ 𝑧 ⊆ ( 𝑥𝑦 ) )
4 3 anbi2i ( ( 𝑧𝐹𝑧 ∈ 𝒫 ( 𝑥𝑦 ) ) ↔ ( 𝑧𝐹𝑧 ⊆ ( 𝑥𝑦 ) ) )
5 2 4 bitri ( 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ↔ ( 𝑧𝐹𝑧 ⊆ ( 𝑥𝑦 ) ) )
6 5 exbii ( ∃ 𝑧 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ↔ ∃ 𝑧 ( 𝑧𝐹𝑧 ⊆ ( 𝑥𝑦 ) ) )
7 n0 ( ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) )
8 df-rex ( ∃ 𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ↔ ∃ 𝑧 ( 𝑧𝐹𝑧 ⊆ ( 𝑥𝑦 ) ) )
9 6 7 8 3bitr4i ( ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ↔ ∃ 𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) )
10 9 2ralbii ( ∀ 𝑥𝐹𝑦𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ↔ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) )
11 10 3anbi3i ( ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ) ↔ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ) )
12 11 anbi2i ( ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥𝑦 ) ) ≠ ∅ ) ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ) ) )
13 1 12 bitrdi ( 𝐵𝐴 → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ) ) ) )