Metamath Proof Explorer


Theorem isfcls

Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypothesis fclsval.x 𝑋 = 𝐽
Assertion isfcls ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )

Proof

Step Hyp Ref Expression
1 fclsval.x 𝑋 = 𝐽
2 anass ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ ( 𝑋 = 𝐹 ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) )
3 fvssunirn ( Fil ‘ 𝑋 ) ⊆ ran Fil
4 3 sseli ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ran Fil )
5 filunibas ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 = 𝑋 )
6 5 eqcomd ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 = 𝐹 )
7 4 6 jca ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ran Fil ∧ 𝑋 = 𝐹 ) )
8 filunirn ( 𝐹 ran Fil ↔ 𝐹 ∈ ( Fil ‘ 𝐹 ) )
9 fveq2 ( 𝑋 = 𝐹 → ( Fil ‘ 𝑋 ) = ( Fil ‘ 𝐹 ) )
10 9 eleq2d ( 𝑋 = 𝐹 → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ 𝐹 ) ) )
11 10 biimparc ( ( 𝐹 ∈ ( Fil ‘ 𝐹 ) ∧ 𝑋 = 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
12 8 11 sylanb ( ( 𝐹 ran Fil ∧ 𝑋 = 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
13 7 12 impbii ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ran Fil ∧ 𝑋 = 𝐹 ) )
14 13 anbi2i ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝐹 ran Fil ∧ 𝑋 = 𝐹 ) ) )
15 14 anbi1i ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ran Fil ∧ 𝑋 = 𝐹 ) ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
16 df-3an ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
17 anass ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ ( 𝐹 ran Fil ∧ 𝑋 = 𝐹 ) ) )
18 17 anbi1i ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ran Fil ∧ 𝑋 = 𝐹 ) ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
19 15 16 18 3bitr4i ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
20 df-fcls fClus = ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ if ( 𝑗 = 𝑓 , 𝑥𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) , ∅ ) )
21 20 elmpocl ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) )
22 1 fclsval ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝐹 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) )
23 8 22 sylan2b ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) )
24 23 eleq2d ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ 𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) )
25 n0i ( 𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → ¬ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∅ )
26 iffalse ( ¬ 𝑋 = 𝐹 → if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∅ )
27 25 26 nsyl2 ( 𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → 𝑋 = 𝐹 )
28 27 a1i ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → 𝑋 = 𝐹 ) )
29 28 pm4.71rd ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ ( 𝑋 = 𝐹𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ) )
30 iftrue ( 𝑋 = 𝐹 → if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) )
31 30 adantl ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) )
32 31 eleq2d ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → ( 𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ 𝐴 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
33 elex ( 𝐴 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V )
34 33 a1i ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → ( 𝐴 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) )
35 filn0 ( 𝐹 ∈ ( Fil ‘ 𝐹 ) → 𝐹 ≠ ∅ )
36 8 35 sylbi ( 𝐹 ran Fil → 𝐹 ≠ ∅ )
37 36 ad2antlr ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → 𝐹 ≠ ∅ )
38 r19.2z ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) → ∃ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) )
39 38 ex ( 𝐹 ≠ ∅ → ( ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
40 37 39 syl ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → ( ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
41 elex ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V )
42 41 rexlimivw ( ∃ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V )
43 40 42 syl6 ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → ( ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) )
44 eliin ( 𝐴 ∈ V → ( 𝐴 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
45 44 a1i ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → ( 𝐴 ∈ V → ( 𝐴 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) )
46 34 43 45 pm5.21ndd ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → ( 𝐴 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
47 32 46 bitrd ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝑋 = 𝐹 ) → ( 𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )
48 47 pm5.32da ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( ( 𝑋 = 𝐹𝐴 ∈ if ( 𝑋 = 𝐹 , 𝑠𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ↔ ( 𝑋 = 𝐹 ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) )
49 24 29 48 3bitrd ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑋 = 𝐹 ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) )
50 21 49 biadanii ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ ( 𝑋 = 𝐹 ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) )
51 2 19 50 3bitr4ri ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) )