Step |
Hyp |
Ref |
Expression |
1 |
|
fclsval.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
anass |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
3 |
|
fvssunirn |
⊢ ( Fil ‘ 𝑋 ) ⊆ ∪ ran Fil |
4 |
3
|
sseli |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ∪ ran Fil ) |
5 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
6 |
5
|
eqcomd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 = ∪ 𝐹 ) |
7 |
4 6
|
jca |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) |
8 |
|
filunirn |
⊢ ( 𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑋 = ∪ 𝐹 → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐹 ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑋 = ∪ 𝐹 → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) ) |
11 |
10
|
biimparc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑋 = ∪ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
12 |
8 11
|
sylanb |
⊢ ( ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
13 |
7 12
|
impbii |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ) |
15 |
14
|
anbi1i |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
16 |
|
df-3an |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
17 |
|
anass |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ) |
18 |
17
|
anbi1i |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
19 |
15 16 18
|
3bitr4i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
20 |
|
df-fcls |
⊢ fClus = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑥 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) , ∅ ) ) |
21 |
20
|
elmpocl |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ) |
22 |
1
|
fclsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) |
23 |
8 22
|
sylan2b |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) |
24 |
23
|
eleq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ) |
25 |
|
n0i |
⊢ ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → ¬ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∅ ) |
26 |
|
iffalse |
⊢ ( ¬ 𝑋 = ∪ 𝐹 → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∅ ) |
27 |
25 26
|
nsyl2 |
⊢ ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → 𝑋 = ∪ 𝐹 ) |
28 |
27
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → 𝑋 = ∪ 𝐹 ) ) |
29 |
28
|
pm4.71rd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ ( 𝑋 = ∪ 𝐹 ∧ 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ) ) |
30 |
|
iftrue |
⊢ ( 𝑋 = ∪ 𝐹 → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) |
32 |
31
|
eleq2d |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
33 |
|
elex |
⊢ ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) |
34 |
33
|
a1i |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) ) |
35 |
|
filn0 |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → 𝐹 ≠ ∅ ) |
36 |
8 35
|
sylbi |
⊢ ( 𝐹 ∈ ∪ ran Fil → 𝐹 ≠ ∅ ) |
37 |
36
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → 𝐹 ≠ ∅ ) |
38 |
|
r19.2z |
⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) |
39 |
38
|
ex |
⊢ ( 𝐹 ≠ ∅ → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
40 |
37 39
|
syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
41 |
|
elex |
⊢ ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) |
42 |
41
|
rexlimivw |
⊢ ( ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) |
43 |
40 42
|
syl6 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) ) |
44 |
|
eliin |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
45 |
44
|
a1i |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
46 |
34 43 45
|
pm5.21ndd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
47 |
32 46
|
bitrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
48 |
47
|
pm5.32da |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( ( 𝑋 = ∪ 𝐹 ∧ 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ↔ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
49 |
24 29 48
|
3bitrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
50 |
21 49
|
biadanii |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
51 |
2 19 50
|
3bitr4ri |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |