| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 2 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 3 | 2 | fveq2d | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( Fil ‘ 𝑋 )  =  ( Fil ‘ ∪  𝐽 ) ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ↔  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) ) | 
						
							| 5 | 4 | biimpa | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 7 | 6 | isfcls | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( 𝐽  ∈  Top  ∧  𝐹  ∈  ( Fil ‘ ∪  𝐽 )  ∧  ∀ 𝑠  ∈  𝐹 𝐴  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 8 |  | df-3an | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐹  ∈  ( Fil ‘ ∪  𝐽 )  ∧  ∀ 𝑠  ∈  𝐹 𝐴  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) )  ↔  ( ( 𝐽  ∈  Top  ∧  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) )  ∧  ∀ 𝑠  ∈  𝐹 𝐴  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ( ( 𝐽  ∈  Top  ∧  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) )  ∧  ∀ 𝑠  ∈  𝐹 𝐴  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 10 | 9 | baib | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐹  ∈  ( Fil ‘ ∪  𝐽 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ∀ 𝑠  ∈  𝐹 𝐴  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | 
						
							| 11 | 1 5 10 | syl2an2r | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐴  ∈  ( 𝐽  fClus  𝐹 )  ↔  ∀ 𝑠  ∈  𝐹 𝐴  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |