Metamath Proof Explorer


Theorem isffth2

Description: A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfth.b 𝐵 = ( Base ‘ 𝐶 )
isfth.h 𝐻 = ( Hom ‘ 𝐶 )
isfth.j 𝐽 = ( Hom ‘ 𝐷 )
Assertion isffth2 ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 isfth.b 𝐵 = ( Base ‘ 𝐶 )
2 isfth.h 𝐻 = ( Hom ‘ 𝐶 )
3 isfth.j 𝐽 = ( Hom ‘ 𝐷 )
4 1 3 2 isfull2 ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
5 1 2 3 isfth2 ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
6 4 5 anbi12i ( ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) ↔ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ) )
7 brin ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) )
8 df-f1o ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
9 8 biancomi ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
10 9 2ralbii ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
11 r19.26-2 ( ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ↔ ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
12 10 11 bitri ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )
13 12 anbi2i ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ) )
14 anandi ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ) ↔ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ) )
15 13 14 bitri ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ↔ ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ∧ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ) )
16 6 7 15 3bitr4i ( 𝐹 ( ( 𝐶 Full 𝐷 ) ∩ ( 𝐶 Faith 𝐷 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1-onto→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )