Metamath Proof Explorer


Theorem isfi

Description: Express " A is finite". Definition 10.29 of TakeutiZaring p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion isfi ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 df-fin Fin = { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦𝑥 }
2 1 eleq2i ( 𝐴 ∈ Fin ↔ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦𝑥 } )
3 relen Rel ≈
4 3 brrelex1i ( 𝐴𝑥𝐴 ∈ V )
5 4 rexlimivw ( ∃ 𝑥 ∈ ω 𝐴𝑥𝐴 ∈ V )
6 breq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
7 6 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ ω 𝑦𝑥 ↔ ∃ 𝑥 ∈ ω 𝐴𝑥 ) )
8 5 7 elab3 ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ω 𝑦𝑥 } ↔ ∃ 𝑥 ∈ ω 𝐴𝑥 )
9 2 8 bitri ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴𝑥 )