Metamath Proof Explorer


Theorem isfil2

Description: Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion isfil2 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 filsspw ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 )
2 0nelfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 )
3 filtop ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋𝐹 )
4 1 2 3 3jca ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) )
5 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
6 filss ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦𝐹𝑥𝑋𝑦𝑥 ) ) → 𝑥𝐹 )
7 6 3exp2 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑦𝐹 → ( 𝑥𝑋 → ( 𝑦𝑥𝑥𝐹 ) ) ) )
8 7 com23 ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝑋 → ( 𝑦𝐹 → ( 𝑦𝑥𝑥𝐹 ) ) ) )
9 8 imp ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( 𝑦𝐹 → ( 𝑦𝑥𝑥𝐹 ) ) )
10 9 rexlimdv ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) )
11 5 10 sylan2 ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) )
12 11 ralrimiva ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) )
13 filin ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥𝐹𝑦𝐹 ) → ( 𝑥𝑦 ) ∈ 𝐹 )
14 13 3expb ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥𝐹𝑦𝐹 ) ) → ( 𝑥𝑦 ) ∈ 𝐹 )
15 14 ralrimivva ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 )
16 4 12 15 3jca ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) )
17 simp11 ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 )
18 simp13 ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → 𝑋𝐹 )
19 18 ne0d ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → 𝐹 ≠ ∅ )
20 simp12 ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → ¬ ∅ ∈ 𝐹 )
21 df-nel ( ∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹 )
22 20 21 sylibr ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → ∅ ∉ 𝐹 )
23 ssid ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 )
24 sseq1 ( 𝑧 = ( 𝑥𝑦 ) → ( 𝑧 ⊆ ( 𝑥𝑦 ) ↔ ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ) )
25 24 rspcev ( ( ( 𝑥𝑦 ) ∈ 𝐹 ∧ ( 𝑥𝑦 ) ⊆ ( 𝑥𝑦 ) ) → ∃ 𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) )
26 23 25 mpan2 ( ( 𝑥𝑦 ) ∈ 𝐹 → ∃ 𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) )
27 26 ralimi ( ∀ 𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 → ∀ 𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) )
28 27 ralimi ( ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 → ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) )
29 28 3ad2ant3 ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) )
30 19 22 29 3jca ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ) )
31 isfbas2 ( 𝑋𝐹 → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ) ) ) )
32 18 31 syl ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥𝐹𝑦𝐹𝑧𝐹 𝑧 ⊆ ( 𝑥𝑦 ) ) ) ) )
33 17 30 32 mpbir2and ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) )
34 n0 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) )
35 elin ( 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) ↔ ( 𝑦𝐹𝑦 ∈ 𝒫 𝑥 ) )
36 elpwi ( 𝑦 ∈ 𝒫 𝑥𝑦𝑥 )
37 36 anim2i ( ( 𝑦𝐹𝑦 ∈ 𝒫 𝑥 ) → ( 𝑦𝐹𝑦𝑥 ) )
38 35 37 sylbi ( 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) → ( 𝑦𝐹𝑦𝑥 ) )
39 38 eximi ( ∃ 𝑦 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) → ∃ 𝑦 ( 𝑦𝐹𝑦𝑥 ) )
40 34 39 sylbi ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → ∃ 𝑦 ( 𝑦𝐹𝑦𝑥 ) )
41 df-rex ( ∃ 𝑦𝐹 𝑦𝑥 ↔ ∃ 𝑦 ( 𝑦𝐹𝑦𝑥 ) )
42 40 41 sylibr ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → ∃ 𝑦𝐹 𝑦𝑥 )
43 42 imim1i ( ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) → ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) )
44 43 ralimi ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) )
45 44 3ad2ant2 ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) )
46 isfil ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥𝐹 ) ) )
47 33 45 46 sylanbrc ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) )
48 16 47 impbii ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦𝐹 𝑦𝑥𝑥𝐹 ) ∧ ∀ 𝑥𝐹𝑦𝐹 ( 𝑥𝑦 ) ∈ 𝐹 ) )