| Step |
Hyp |
Ref |
Expression |
| 1 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 2 |
|
0nelfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) |
| 3 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 4 |
1 2 3
|
3jca |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ) |
| 5 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
| 6 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) |
| 7 |
6
|
3exp2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 8 |
7
|
com23 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑦 ∈ 𝐹 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 9 |
8
|
imp |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 10 |
9
|
rexlimdv |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 11 |
5 10
|
sylan2 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 12 |
11
|
ralrimiva |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 13 |
|
filin |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 14 |
13
|
3expb |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 15 |
14
|
ralrimivva |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 16 |
4 12 15
|
3jca |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) ) |
| 17 |
|
simp11 |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 18 |
|
simp13 |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝑋 ∈ 𝐹 ) |
| 19 |
18
|
ne0d |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ≠ ∅ ) |
| 20 |
|
simp12 |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ¬ ∅ ∈ 𝐹 ) |
| 21 |
|
df-nel |
⊢ ( ∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ∅ ∉ 𝐹 ) |
| 23 |
|
ssid |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) |
| 24 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 25 |
24
|
rspcev |
⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ∧ ( 𝑥 ∩ 𝑦 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 26 |
23 25
|
mpan2 |
⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 27 |
26
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 28 |
27
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 29 |
28
|
3ad2ant3 |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 30 |
19 22 29
|
3jca |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 31 |
|
isfbas2 |
⊢ ( 𝑋 ∈ 𝐹 → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 32 |
18 31
|
syl |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 33 |
17 30 32
|
mpbir2and |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 34 |
|
n0 |
⊢ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) ) |
| 35 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) ↔ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ∈ 𝒫 𝑥 ) ) |
| 36 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑥 → 𝑦 ⊆ 𝑥 ) |
| 37 |
36
|
anim2i |
⊢ ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ∈ 𝒫 𝑥 ) → ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 38 |
35 37
|
sylbi |
⊢ ( 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) → ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 39 |
38
|
eximi |
⊢ ( ∃ 𝑦 𝑦 ∈ ( 𝐹 ∩ 𝒫 𝑥 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 40 |
34 39
|
sylbi |
⊢ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 41 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑥 ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 ) |
| 43 |
42
|
imim1i |
⊢ ( ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) → ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 44 |
43
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 45 |
44
|
3ad2ant2 |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) |
| 46 |
|
isfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ( 𝐹 ∩ 𝒫 𝑥 ) ≠ ∅ → 𝑥 ∈ 𝐹 ) ) ) |
| 47 |
33 45 46
|
sylanbrc |
⊢ ( ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 48 |
16 47
|
impbii |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( ( 𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∃ 𝑦 ∈ 𝐹 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) ) |