Step |
Hyp |
Ref |
Expression |
1 |
|
isfild.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) |
2 |
|
isfild.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
isfild.3 |
⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) |
4 |
|
isfild.4 |
⊢ ( 𝜑 → ¬ [ ∅ / 𝑥 ] 𝜓 ) |
5 |
|
isfild.5 |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
6 |
|
isfild.6 |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) → ( ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) |
7 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
8 |
7
|
biimpri |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) → 𝑥 ∈ 𝒫 𝐴 ) |
10 |
1 9
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 → 𝑥 ∈ 𝒫 𝐴 ) ) |
11 |
10
|
ssrdv |
⊢ ( 𝜑 → 𝐹 ⊆ 𝒫 𝐴 ) |
12 |
1 2
|
isfildlem |
⊢ ( 𝜑 → ( ∅ ∈ 𝐹 ↔ ( ∅ ⊆ 𝐴 ∧ [ ∅ / 𝑥 ] 𝜓 ) ) ) |
13 |
|
simpr |
⊢ ( ( ∅ ⊆ 𝐴 ∧ [ ∅ / 𝑥 ] 𝜓 ) → [ ∅ / 𝑥 ] 𝜓 ) |
14 |
12 13
|
syl6bi |
⊢ ( 𝜑 → ( ∅ ∈ 𝐹 → [ ∅ / 𝑥 ] 𝜓 ) ) |
15 |
4 14
|
mtod |
⊢ ( 𝜑 → ¬ ∅ ∈ 𝐹 ) |
16 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
17 |
3 16
|
jctil |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
18 |
1 2
|
isfildlem |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐹 ↔ ( 𝐴 ⊆ 𝐴 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
19 |
17 18
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝐹 ) |
20 |
11 15 19
|
3jca |
⊢ ( 𝜑 → ( 𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) ) |
21 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴 ) |
22 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → 𝑦 ⊆ 𝐴 ) |
23 |
5 22
|
jctild |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( [ 𝑧 / 𝑥 ] 𝜓 → ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
24 |
23
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) → ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
25 |
1 2
|
isfildlem |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐹 ↔ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑧 ∈ 𝐹 ↔ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) |
27 |
1 2
|
isfildlem |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
29 |
24 26 28
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑧 ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) |
30 |
29
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑧 ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) |
31 |
30
|
impancom |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
32 |
31
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) |
34 |
21 33
|
syl5 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝒫 𝐴 → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) |
35 |
34
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
36 |
|
ssinss1 |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
38 |
37
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) ) |
39 |
|
an4 |
⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ↔ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) |
40 |
6
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ) → ( ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) |
41 |
40
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) |
42 |
39 41
|
syl5bi |
⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) |
43 |
38 42
|
jcad |
⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → ( ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ∧ [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) ) |
44 |
27 25
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ↔ ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) ) |
45 |
1 2
|
isfildlem |
⊢ ( 𝜑 → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ↔ ( ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ∧ [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) ) |
46 |
43 44 45
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ) ) |
47 |
46
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ) |
48 |
|
isfil2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ↔ ( ( 𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ) ) |
49 |
20 35 47 48
|
syl3anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( Fil ‘ 𝐴 ) ) |