| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfild.1 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐹  ↔  ( 𝑥  ⊆  𝐴  ∧  𝜓 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							isfild.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐵  ∈  𝐹  →  𝐵  ∈  V )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐵  ∈  𝐹  →  𝐵  ∈  V ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝐵  ∈  V )  | 
						
						
							| 6 | 
							
								5
							 | 
							expcom | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐵  ⊆  𝐴  →  𝐵  ∈  V ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐵  ⊆  𝐴  →  𝐵  ∈  V ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantrd | 
							⊢ ( 𝜑  →  ( ( 𝐵  ⊆  𝐴  ∧  [ 𝐵  /  𝑥 ] 𝜓 )  →  𝐵  ∈  V ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∈  𝐹  ↔  𝐵  ∈  𝐹 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ⊆  𝐴  ↔  𝐵  ⊆  𝐴 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dfsbcq | 
							⊢ ( 𝑦  =  𝐵  →  ( [ 𝑦  /  𝑥 ] 𝜓  ↔  [ 𝐵  /  𝑥 ] 𝜓 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							anbi12d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 )  ↔  ( 𝐵  ⊆  𝐴  ∧  [ 𝐵  /  𝑥 ] 𝜓 ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							bibi12d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( 𝑦  ∈  𝐹  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) )  ↔  ( 𝐵  ∈  𝐹  ↔  ( 𝐵  ⊆  𝐴  ∧  [ 𝐵  /  𝑥 ] 𝜓 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imbi2d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( 𝜑  →  ( 𝑦  ∈  𝐹  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) )  ↔  ( 𝜑  →  ( 𝐵  ∈  𝐹  ↔  ( 𝐵  ⊆  𝐴  ∧  [ 𝐵  /  𝑥 ] 𝜓 ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 16 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ∈  𝐹  | 
						
						
							| 17 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ⊆  𝐴  | 
						
						
							| 18 | 
							
								
							 | 
							nfsbc1v | 
							⊢ Ⅎ 𝑥 [ 𝑦  /  𝑥 ] 𝜓  | 
						
						
							| 19 | 
							
								17 18
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							nfbi | 
							⊢ Ⅎ 𝑥 ( 𝑦  ∈  𝐹  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( 𝜑  →  ( 𝑦  ∈  𝐹  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐹  ↔  𝑦  ∈  𝐹 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ⊆  𝐴  ↔  𝑦  ⊆  𝐴 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							sbceq1a | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  [ 𝑦  /  𝑥 ] 𝜓 ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ⊆  𝐴  ∧  𝜓 )  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							bibi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐹  ↔  ( 𝑥  ⊆  𝐴  ∧  𝜓 ) )  ↔  ( 𝑦  ∈  𝐹  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							imbi2d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  ( 𝑥  ∈  𝐹  ↔  ( 𝑥  ⊆  𝐴  ∧  𝜓 ) ) )  ↔  ( 𝜑  →  ( 𝑦  ∈  𝐹  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) ) ) )  | 
						
						
							| 28 | 
							
								21 27 1
							 | 
							chvarfv | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐹  ↔  ( 𝑦  ⊆  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜓 ) ) )  | 
						
						
							| 29 | 
							
								14 28
							 | 
							vtoclg | 
							⊢ ( 𝐵  ∈  V  →  ( 𝜑  →  ( 𝐵  ∈  𝐹  ↔  ( 𝐵  ⊆  𝐴  ∧  [ 𝐵  /  𝑥 ] 𝜓 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							com12 | 
							⊢ ( 𝜑  →  ( 𝐵  ∈  V  →  ( 𝐵  ∈  𝐹  ↔  ( 𝐵  ⊆  𝐴  ∧  [ 𝐵  /  𝑥 ] 𝜓 ) ) ) )  | 
						
						
							| 31 | 
							
								4 8 30
							 | 
							pm5.21ndd | 
							⊢ ( 𝜑  →  ( 𝐵  ∈  𝐹  ↔  ( 𝐵  ⊆  𝐴  ∧  [ 𝐵  /  𝑥 ] 𝜓 ) ) )  |